Published on in Vol 11, No 3 (2022): March

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/34896, first published .
Leveraging Artificial Intelligence to Improve the Diversity of Dermatological Skin Color Pathology: Protocol for an Algorithm Development and Validation Study

Leveraging Artificial Intelligence to Improve the Diversity of Dermatological Skin Color Pathology: Protocol for an Algorithm Development and Validation Study

Leveraging Artificial Intelligence to Improve the Diversity of Dermatological Skin Color Pathology: Protocol for an Algorithm Development and Validation Study

Authors of this article:

Eman Rezk1 Author Orcid Image ;   Mohamed Eltorki2 Author Orcid Image ;   Wael El-Dakhakhni1 Author Orcid Image

Journals

  1. Rezk E, Eltorki M, El-Dakhakhni W. Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach. JMIR Dermatology 2022;5(3):e39143 View
  2. Baig A, Abbas Q, Almakki R, Ibrahim M, AlSuwaidan L, Ahmed A. Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions. Diagnostics 2023;13(3):385 View
  3. Ghaith M, Yosri A, El-Dakhakhni W. Synchronization-Enhanced Deep Learning Early Flood Risk Predictions: The Core of Data-Driven City Digital Twins for Climate Resilience Planning. Water 2022;14(22):3619 View
  4. Kushimo O, Salau A, Adeleke O, Olaoye D. Deep learning model to improve melanoma detection in people of color. Arab Journal of Basic and Applied Sciences 2023;30(1):92 View
  5. Rezk E, Haggag M, Eltorki M, El-Dakhakhni W. A comprehensive review of artificial intelligence methods and applications in skin cancer diagnosis and treatment: Emerging trends and challenges. Healthcare Analytics 2023;4:100259 View
  6. Jiminez V, Chung M, Saleem M, Yusuf N. Use of Artificial Intelligence in Skin Aging. OBM Geriatrics 2023;07(02):1 View
  7. Patel R, Foltz E, Witkowski A, Ludzik J. Analysis of Artificial Intelligence-Based Approaches Applied to Non-Invasive Imaging for Early Detection of Melanoma: A Systematic Review. Cancers 2023;15(19):4694 View
  8. Sengupta D. Artificial Intelligence in Diagnostic Dermatology: Challenges and the Way Forward. Indian Dermatology Online Journal 2023;14(6):782 View
  9. Cho S, Navarrete-Dechent C, Daneshjou R, Cho H, Chang S, Kim S, Na J, Han S. Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet. JAMA Dermatology 2023;159(11):1223 View
  10. Ongoro G, Avestruz Z, Stover S. Skin Inclusion: Addressing Deficits in Medical Education to Promote Diversity in Dermatological Diagnosis and Treatment. Clinical, Cosmetic and Investigational Dermatology 2023;Volume 16:3481 View
  11. Primiero C, Rezze G, Caffery L, Carrera C, Podlipnik S, Espinosa N, Puig S, Janda M, Soyer H, Malvehy J. A Narrative Review: Opportunities and Challenges in Artificial Intelligence Skin Image Analyses Using Total Body Photography. Journal of Investigative Dermatology 2024;144(6):1200 View
  12. Foltz E, Witkowski A, Becker A, Latour E, Lim J, Hamilton A, Ludzik J. Artificial Intelligence Applied to Non-Invasive Imaging Modalities in Identification of Nonmelanoma Skin Cancer: A Systematic Review. Cancers 2024;16(3):629 View
  13. Fliorent R, Fardman B, Podwojniak A, Javaid K, Tan I, Ghani H, Truong T, Rao B, Heath C. Artificial intelligence in dermatology: advancements and challenges in skin of color. International Journal of Dermatology 2024;63(4):455 View
  14. Hartmann L, Langhans D, Eggarter V, Freisenich T, Hillenmayer A, König S, Vounotrypidis E, Wolf A, Wertheimer C. Keratoconus Progression Determined at the First Visit: A Deep Learning Approach With Fusion of Imaging and Numerical Clinical Data. Translational Vision Science & Technology 2024;13(5):7 View
  15. Alipour N, Burke T, Courtney J. Skin Type Diversity in Skin Lesion Datasets: A Review. Current Dermatology Reports 2024;13(3):198 View
  16. Perfetto Marques M, Alves Ponciano M, De Toledo Soares Ribeiro S, Alvares Penha M. O USO DA INTELIGÊNCIA ARTIFICIAL NA DETECÇÃO PRECOCE DO CÂNCER DE PELE MELANOMA. Revista OMNIA Saúde 2024;7(esp.):211 View

Books/Policy Documents

  1. Rahaman M, Pappachan P, Orozco S, Bansal S, Arya V. Challenges in Large Language Model Development and AI Ethics. View