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Abstract

Background: The paucity of dark skin images in dermatological textbooks and atlases is a reflection of racial injustice in
medicine. The underrepresentation of dark skin images makes diagnosing skin pathology in people of color challenging. For
conditions such as skin cancer, in which early diagnosis makes a difference between life and death, people of color have worse
prognoses and lower survival rates than people with lighter skin tones as a result of delayed or incorrect diagnoses. Recent
advances in artificial intelligence, such as deep learning, offer a potential solution that can be achieved by diversifying the mostly
light-skin image repositories through generating images for darker skin tones. Thus, facilitating the development of inclusive
cancer early diagnosis systems that are trained and tested on diverse images that truly represent human skin tones.

Objective: We aim to develop and evaluate an artificial intelligence–based skin cancer early detection system for all skin tones
using clinical images.

Methods: This study consists of four phases: (1) Publicly available skin image repositories will be analyzed to quantify the
underrepresentation of darker skin tones, (2) Images will be generated for the underrepresented skin tones, (3) Generated images
will be extensively evaluated for realism and disease presentation with quantitative image quality assessment as well as qualitative
human expert and nonexpert ratings, and (4) The images will be utilized with available light-skin images to develop a robust skin
cancer early detection model.

Results: This study started in September 2020. The first phase of quantifying the underrepresentation of darker skin tones was
completed in March 2021. The second phase of generating the images is in progress and will be completed by March 2022. The
third phase is expected to be completed by May 2022, and the final phase is expected to be completed by September 2022.

Conclusions: This work is the first step toward expanding skin tone diversity in existing image databases to address the current
gap in the underrepresentation of darker skin tones. Once validated, the image bank will be a valuable resource that can potentially
be utilized in physician education and in research applications. Furthermore, generated images are expected to improve the
generalizability of skin cancer detection. When completed, the model will assist family physicians and general practitioners in
evaluating skin lesion severity and in efficient triaging for referral to expert dermatologists. In addition, the model can assist
dermatologists in diagnosing skin lesions.
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Introduction

Background
Dermatology textbooks and atlases lack diversity in skin tones,
which propagates structural racism in the health care system
[1]. Descriptions and image documentations of differing
dermatologic conditions have been largely based on light skin,
posing challenges for dermatologists to promptly recognize
conditions in darker skins [2]. These challenges may result in
serious negative consequences when early diagnosis is crucial,
such as in skin cancer. Prior work [3,4] has demonstrated that
people of color have worse prognoses and lower survival rates
attributed to delayed or incorrect diagnoses. In people of color,
squamous cell carcinoma is the most common type of cancer,
and delayed diagnosis is linked to higher rates of metastasis and
a decrease in the 10-year survival rate to 20% [4]. The second
most common cancer is basal cell carcinoma, in which 50% of
the cases are pigmented and often misdiagnosed as melanoma,
seborrheic keratosis or nevus sebaceous [4]. Finally, people of
color are typically diagnosed at more advanced stages of
melanoma, which is responsible for 75% of mortality from all
skin cancers [5], and this late diagnosis causes a dramatic
decrease in the 5-year survival rate to 66.7% compared to 92.5%
in individuals with light skin [6].

Artificial Intelligence in Dermatology
Artificial intelligence refers to techniques that allow machines
to mimic human behavior to analyze complex data [7]. Deep
learning is a leading technology in artificial intelligence that
leverages the capabilities of neural networks to analyze complex
system structures independently from human intervention. As
a result, deep learning has led to breakthroughs in the
development of intelligent medical image analysis and diagnosis
with performance comparable to that of health care providers
[8].

In dermatology, deep learning models have been performing
on par with dermatologists in diagnosing skin cancer. In
melanoma classification, a convolutional neural network trained
on 12,378 dermoscopic images and tested on 100 clinical images
performed on par with 145 dermatologists [9]. The convolutional
neural network and dermatologists achieved a mean sensitivity
of 89.4%, while the convolutional neural network had a
specificity of 68.2% compared with a sensitivity of 64.4% for
the dermatologists. Furthermore, a convolutional neural network
was utilized to assist 12 board-certified dermatologists in
melanoma diagnosis [10]. With the support of the convolutional
neural network, the mean sensitivity of the dermatologists
significantly (P=.003) improved from 59.4% to 74.6%, and the
mean accuracy significantly (P=.002) increased from 65.0% to
73.6%.

Haenssle et al [11] compared the performance of a deep
learning–based model to that of 96 dermatologists with varying
levels of experience in classifying skin lesion dermoscopic
images as malignant or benign. The model obtained a sensitivity
of 95.0% (95% CI 83.5%-98.6%) and a specificity of 76.7%
(95% CI 64.6%-85.6%); however, the dermatologists had a
mean sensitivity of 89.0% (95% CI 87.4%-90.6%) and
specificity of 80.7% (95% CI 78.8%-82.6%). In another

experiment [11] that involved diagnosis using a combination
of dermoscopic images and clinical vignettes, dermatologists
had a sensitivity of 94.1% (95% CI 93.1%-95.1%) and a
specificity of 80.4% (95% CI 78.4%-82.4%). At the same
specificity level as the dermatologists, the deep learning–based
model had a sensitivity of 95% (95% CI 83.5%-98.6%) [11].

In diagnosing nonpigmented skin cancer [12], the performance
of a convolutional neural network trained on 13,724 images
(7895 dermoscopic and 5829 clinical) and tested on 2072 images
was compared with that of beginner, intermediate, and expert
dermatologists (95 categorized by years of experience) and
achieved an area under the curve (AUC) of 0.742 (95% CI
0.729-0.755) compared with an AUC of 0.695 (95% CI
0.676-0.713) for the dermatologists. For particularly challenging
conditions, 37.6% (95% CI 36.6%-38.4%) of the network’s
diagnoses were correct, which was higher than the corresponding
percentages for beginner and intermediate dermatologists but
less than that of expert dermatologists (accuracy 40.0%, 95%
CI 37.0%-43.0%). Given the low number of expert
dermatologists in many health care jurisdictions [13], this
technology would be very useful in assisting nonexpert
dermatologists (eg, general practitioners) in triaging skin lesions
that need a referral to an expert dermatologist for advanced
assessment.

Unfortunately, despite these advancements, the ability to take
full advantage of deep learning capabilities is limited due to the
lack of adequate quantity and quality of real-world data.
Furthermore, and notwithstanding its advantages, the use of
deep learning has further put people with darker skin tones at
a disadvantage, because training data used in the development
of published models lack the true breadth of human skin tones
[14,15]. The paucity of nonwhite skin tones in training data
limits the generalizability of developed models to nonwhite skin
tones. For example, a deep learning–based classifier to diagnose
12 malignant and benign skin lesions using clinical images [16]
trained on Asian skin images and validated with Caucasian
images classified basal cell carcinoma with an AUC of 0.78,
SD 0.02. However, when the training data was augmented by
including Caucasian images, the AUC improved to 0.90, SD
0.01. Despite of the excellent performance metrics during
development and validation, the model’s generalizability was
deficient when tested on a different patient population [17].

The lack of skin tone diversity also limits the study of the
relationship between skin tone and diagnostic accuracy. Analysis
performed on 2 publicly available data sets—the international
skin imaging collaboration (ISIC), which consists of 10,015
dermoscopic images from 7 skin diseases data set, and SD-198,
which consists of 6548 clinical images from 198 skin diseases
[18]—showed no measurable correlation between classification
accuracy and skin tone, which was attributed to the fact that the
images in the data sets consisted mainly of light skin tones [18].

Study Goals
Several promising initiatives are being employed to address the
lack of diversity, such as a deliberate focus on increasing the
diversity of students in medical schools and postgraduate
dermatology training programs [19,20], emerging textbooks
and literature targeting darker skin pathology [21], and new
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websites to build a database of skin pathology in darker skin
tones [1]; however, these efforts are complex, challenging, and
take time, thus, implementing a rapid yet effective solution to
address this gap is imperative.

We aim to (1) identify the underrepresented tones in publicly
available dermatology clinical image atlases; (2) generate
realistic images for darker skin with closely related malignant
and benign conditions; (3) extensively evaluate the images,
using quantitative ratings as well as qualitative human expert
and nonexpert ratings; and (4) develop a classification model
using several deep learning networks to detect malignancy on
all skin tones.

Methods

Overview
This work has 4 main phases (Figure 1). The focus of this work
is on common malignant skin pathology and closely related
disorders that resemble those malignant lesions and form part
of their differential diagnosis; therefore, we collected all clinical
images representing those conditions such as basal cell
carcinoma, squamous cell carcinoma, melanoma, and nevus
from DermNet NZ (994 images) [22], ISIC 2018 (100 images)
[23], and a dermatology atlas (607 images) [24]. Images from
ISIC and DermNet NZ (Set A) were utilized in training,
finetuning, and internal validation. The dermatology atlas images
(Set B) will be utilized only for testing the classification model
in phase 4 (Table 1).

Figure 1. Phases of the proposed work.

Table 1. Image distribution for training, finetuning, and internal validation (Set A) and for testing (Set B).

Set B (n=607), n (%)Set A (n=1094), n (%)Class

508 (83.7)634 (58)Malignant

99 (16.3)460 (42)Benign

Phase 1: Underrepresented Skin Tones Identification
The goal of this phase (Figure 2) is to analyze the images to
determine the skin tone distribution and quantify the
underrepresentation of the darker tones in the data sets.
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Figure 2. Modules of phase 1. CNN: convolutional neural network.

Skin Image Augmented Segmentation
Image data augmentation is the process of applying
transformations on the images such as flipping, cropping, and
rotating to increase the training set size, improve training data
variance, and reduce overfitting [25]. A set of 500 clinical
images was randomly selected from Set A; images were
horizontally flipped and rotated by 90° to yield additional images
for the data set (Figure 3).

The images (500 original and 1000 augmented) were utilized
to train a segmentation network to separate the disease region
from the underlying skin and allow the analysis of the skin color.
Trained segmentation networks can be used to improve skin

image classification [26]. A deep learning–based image
segmentation network developed by Azad et al [27] was
employed due to its high accuracy in segmenting dermoscopic
skin images. The network was initially trained on 2594
dermoscopic skin images [27]. We adapted the network to
segment clinical skin images through transfer learning, by
performing an additional cycle of training on the original and
augmented images (1500). The training data were randomly
split into 1200 (80%) images for training, 150 (10%) images
for validation, and 150 (10%) images for testing. Because
segmentation classifies each pixel in the image as disease or
skin, it can be considered a binary classification problem;
therefore, the segmentation model was assessed using accuracy,
sensitivity, specificity, AUC, and Jaccard similarity.

Figure 3. Data augmentation on skin image (A) original image (B) horizontal flipping (C) 90° rotation.

Skin Image Clustering
The segmented normal skin regions in the images were
preprocessed to detect and remove any possible nonsegmented
disease pixels resulting from a variation of the skin color,
improve the quality of the images, and allow for accurate skin
tone analyses. The contrast of the images was enhanced (Figure
4) using the contrast-limited adaptive histogram equalization,
which has been widely applied in medical image enhancement,
such as retinal fundus images [28], breast mammography [29],
and bone fracture images [29]. The contrast enhancement
algorithm divides the image into sections and creates a histogram
for each section that is utilized to redistribute the brightness
across the image. This method has outperformed other contrast
enhancement methods because it limits the amplification of the
contrast across the image and hence reduces noise [30].

Applying contrast adjustment helped to identify pigmented spots
and made them easier to remove. A thresholding technique
(Figure 5) that analyzed the updated image histogram to classify
each pixel as foreground or background [31] was implemented
to detect and remove any objects on the skin such as colored
spots and hair. As a result, the image included only the pixels
that truly reflected skin color.

Processed skin pixels were subsequently analyzed to determine
the dominant skin tone using k-means clustering [32] to group
the pixels based on color values. The number of clusters was
selected to minimize the sum of squared errors and improve
in-cluster cohesion [33]. The cluster that had the maximum
number of pixels was considered the dominant cluster, and its
center was considered the dominant color.
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Figure 4. Skin image histogram (A) before and (B) after equalization.

Figure 5. (A) Original and (B) contrast-adjusted (with thresholding) image.

Skin Tone Classification
Although skin tone is easy to perceive, it is challenging to
evaluate quantitively. Fitzpatrick [34] defined 6 skin color
categories (very light, light, intermediate, tan, brown, and dark).
The Melanin Index is one of the most reliable metrics to quantify
human skin color based on skin reflectance (using a reflectance
spectrophotometer) [35]. However, the use of the melanin index
is limited to dermatologists as it requires specialized equipment.
Individual typology angle is another metric to evaluate the skin
tone category in which the skin color is utilized to calculate an
angle that can be assigned to a skin category [36]. Unfortunately,
the former skin categorization approach has exhibited
inconsistencies and inaccuracies compared to the perceived skin
tones [18].

We developed a skin categorization model that classified a
dominant skin color into a skin category. An ensemble model,
which included k-nearest neighbor [37], random forest [38],
and naïve Bayes [39] methods, was implemented to classify the
dominant skin color as very light, light, intermediate, tan, brown,
or black. For training and validation, a set of 100 skin color
variations, represented in the RGB (red, green, blue) color space,
was collected from the human skin color database [40]. RGB
features were processed to create supplementary color features
from different color spaces such as HSV (hue, saturation, value)
and Lab (L represents luminance, a represents the range from
red to green, and b represents the range from blue to yellow)
[41] to provide the model with sufficient color information
(Figure 6). The model was tested on the dominant colors
extracted from the clustering step and evaluated using accuracy
and AUC.
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Figure 6. (A) RGB (red, green, blue); (B) HSV (hue, saturation, value); and (C) Lab (luminance, red–green, blue–yellow) color spaces.

Phase 2: Image Generations for Underrepresented
Tones
Style transfer and deep blending image generation methods will
be investigated. Both methods are based on image feature
extraction and blending using the Visual Geometry Group
network trained on the ImageNet database with millions of
images for object localization and recognition [42]. Given that
convolutional neural networks trained using sufficient labeled
data on object recognition are capable of extracting high-level
feature representations regardless of the data set [43], style

transfer and deep blending can be generalized to the skin image
generation problem.

Style transfer has been mainly applied to create stylized artwork
[44]. This method will be used to generate skin images with
dark skin tones by extracting the features of (1) a content image
containing the skin pathological condition and (2) a style image
with the target skin color. A new image containing a weighted
blend of both feature sets will then be generated starting from
noise and iteratively improving by minimizing the content and
style loss (Figure 7).

Figure 7. Style transfer procedure. VGG: Visual Geometry Group.

Deep blending has been used to blend an object with a target
background image technically, as in style transfer; however
deep blending has 3 main differences [45]: only the object of
interest in the source (content) image is blended with the target
(style) image, thus it requires a segmentation mask, a new loss
metric is added to the content and style loss to minimize the
sharp intensity change between the source object and target
image, and 2 rounds of blending are performed—one with the
source object and target image, and the second with the output
image of the first round and the target image (Figure 8). We
will use this method to (1) achieve a seamless blending of the

content disease region and the target skin features and (2) use
the image generated from the first step with the style image as
input to the network to impose the target skin features (eg, color
and texture) on the disease region and the blending boundary
to provide a smooth realistic image.

The parameters of style transfer and deep blending methods,
such as the number of network layers, the content to style
weights, and the degree of lesion pigmentation, will be
finetuned. The methods will be employed to generate images
for underrepresented skin tones (based on the findings of phase
1).
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Figure 8. Deep blending rounds.

Phase 3: Generated Image Evaluations

Overview
The images that are generated will be assessed quantitively and
qualitatively. Primarily image realism and disease presentation
will be evaluated through numerical image quality metrics as
well as human expert and nonexpert rating. The best performing
image generation technique will be utilized to generate diverse
images to train the classification model.

Quantitative Evaluation
Quantitative evaluation of the generated images will be
performed using 2 image quality assessment metrics—the blind
reference-less image spatial quality evaluator, a reference-less
metric that quantifies the loss of image realism in the presence
of distortions by extracting 18 statistical features to assign a
quality score with a support vector machine regressor [46], and
the structural similarity index measure, which compares the
structure, texture, and edges of a reference image (the original
image) with a modified image and provides a similarity score
[47].

Qualitative Evaluation
The human visual Turing test, wherein participants are asked
to classify images as real or generated, will be conducted.
Participants of this test will be medical personnel with varying
experience and nonmedical personnel. The classification
accuracy, false positive rate (the ratio of generated images
classified as real), and true positive rate ( the ratio of real images
classified as real) will be calculated. Furthermore, a regression
model will be implemented to study the significance of the
participants’background in distinguishing the generated images.

Disease identification will also be conducted, which will include
solely dermatologists with different years of experience as
participants, to evaluate the accuracy of disease presentation in
the generated images. The dermatologists will be asked to
choose the disease that best describes a set of real and generated
images with various malignant and benign conditions. The rate
of correctly identified images will be calculated for each disease,
image group (real or generated), and skin tone. In addition,

disease misdiagnosis rates will be compared with that in
published literature pertaining to misdiagnoses in skin of color.

Phase 4: Classification Model Development
The goal of this phase is to develop a malignancy detection
model using real and generated diverse images. To develop the
model, skin images from Set A and dark skin images generated
in phase 2 will be utilized for training and validation. Set B will
be used as an independent test set. Set A contains primarily
images with light skin (collected from New Zealand). Set B
was collected from Brazil where there are varying skin tones
(based on Fitzpatrick classification) in the population compared
with that of New Zealand [48]. The diversity in Set B, which
was confirmed in phase 1, will allow the generalizability of the
model to darker skin tones to be evaluated and the impact of
the generated images on the classification accuracy to be
determined.

Several classification networks will be trained and validated on
Set A after handling data skewness. Data augmentation
techniques will be utilized to balance class distribution and
ensure that the model is not biased toward any class. Given that
the developed model will be well balanced, no augmentation
on Set B will be performed during the testing phase.

As training deep learning–based classification networks requires
large data sets, adapting pretrained networks is important to
make use of the network’s calculated weights instead of starting
from random weights which requires more training data.
Transferring knowledge from networks pretrained on a large
number of images, then enriching that knowledge to classify
skin images helps to overcome the lack of data. Therefore, deep
learning network architectures such as GoogLeNet [49] and
ResNet [50], initially trained with millions of natural images
from the ImageNet data set, will be adapted. Existing weights
obtained from pretraining will be customized to fit skin image
classification.

The classification process will follow 2 approaches to evaluate
the effect of the generated images on skin tone diversity,
classification accuracy, and generalizability. (1) The
convolutional neural networks will be trained on 80% of Set A
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(randomly selected) and their corresponding generated darker
color images. The remaining 20% will be used for validation
while building the model and to update the network weights.
This approach will help increase the number of training instances
and is expected to familiarize the network with diverse human
skin tones. (2) The convolutional neural networks will be trained
on the same 80% of Set A images and their corresponding
augmented images. The remaining 20% will be utilized for
validation, thus the training set and the validation set in both
approaches have the same sizes and same original images. In
both approaches, Set B will be utilized for testing.

Accuracy boosting will be attempted by integrating
supplementary information as separate features, such as skin
color category, lesion anatomic distribution, and lesion textual
description (lesion color, shape, texture, clinical presentation,
associated conditions such as scarring and inflammation). For
example, in people of color, pigmented basal cell carcinoma is
more prevalent, which will be captured by the generated images,
however, some features, such as the solitary papule appearance,
will be provided as textual description [51] to address missed
appearance factors in the generated images, which will improve
malignancy detection in the skin of color where lesions might
look different or can be associated with unusual signs [51].

The models will be evaluated using accuracy and AUC. We
will compare model classification performance to that of the
dermatologists and report the dermatologists’ diagnosis
performance with the aid of the developed model as a second
opinion. In addition, the correlation between performance
measures and skin tone will be calculated.

Results

Phase 1 was initiated in September 2020 and completed in
March 2021. Phase 2 was subsequently initiated and will be
completed in March 2022. Phase 3 and phase 4 will be
conducted in parallel; the study is expected to be completed by
September 2022.

In Figure 9, a comparison between the segmentation model with
and without training on clinical skin images shows that training
improves all performance metrics. Accuracy increased from
0.88 (95% CI 0.8798-0.8802) to 0.94 (95% CI 0.9399-0.9401),
sensitivity slightly increased from 0.72 (95% CI 0.7197-0.7203)
to 0.73 (95% CI 0.7297-0.7303), specificity significantly
increased from 0.91 (95% CI 0.9098-0.9102) to 0.98 (95% CI
0.9799-0.9801), AUC increased from 0.82 (95% CI
0.8155-0.8162) to 0.85 (95% CI 0.8538-0.8544), and Jaccard
similarity increased from 0.88 (95% CI 0.8798-0.8802) to 0.94
(95% CI 0.9399-0.9401).

Segmentation masks that outlined the region of the disease
improved with training (Figure 10). After image enhancement
and thresholding, the bar of clusters’ center color is plotted; the
first cluster is the largest and dominant one (Figure 11). In
classifying the dominant colors into skin tone categories (Figure
12), the model performed well (accuracy 0.95, 95% CI 0.86-1.0;
AUC 0.98, 95% CI 0.92-1.0).

In Set A, more than 60% of the images were light skin, 20%
were intermediate, and only 20% were tan, brown, and black;
in Set B, 45.5% of the images were tan, brown, and black
(Figure 13).

Figure 9. Performance measures of the segmentation before and after training.
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Figure 10. (A) input; (B) without training; and (C) with training.

Figure 11. Clustering results.

Figure 12. Skin tone categorization results.
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Figure 13. Skin tone distribution in set A and set B.

Discussion

General
Currently, we have successfully completed the first phase and
the second phase is in progress. Based on the results of phase
1, phase 2 will be configured to generate images for the
underrepresented skin tones in Set A, thus a diverse image bank
will be created. Phase 3 when completed will extensively
evaluate the generated images to ensure their quality and high
disease presentation. Since an image library that reflects the
true breadth of human skin tones will become available, we will
build generalizable deep learning models to detect malignancy.
Moreover, the detection accuracy will be boosted by employing
supplementary features extracted from disease clinical
presentation and anatomic distribution. Furthermore, the
correlation between classification accuracy and skin tones can
be studied, and the performance of dermatologists with the aid
of the skin cancer early detection system will be assessed in
phase 4.

The development of the integrated artificial intelligence-based
skin cancer early detection system for all skin tones incorporates
4 main milestones: identifying underrepresented skin tones,
generating a diverse clinical image bank for various malignant
and benign conditions, broadly evaluating the generated images,
and developing a generalizable classifier to detect malignancy
in any skin tone.

The system is designed to analyze clinical images to increase
its usability as digital cameras are easily accessible. The system
will advantage all skin tones, consequently increasing the dark
skin tone inclusion. The system is also expected to raise the
clinical index of suspicion and boost the detection rates of
malignant lesions. Finally, the system will assist prioritize
patients’ referrals to expert dermatologists, for faster diagnosis
and help dermatologists with malignancy detection.

The preliminary findings show that the segmentation
components demonstrate high accuracy and the quality of the
pilot-generated images is promising.

Comparison With Prior Work
Image generation using deep learning had been applied to
improve pathology diversity and balance the data. Generative
adversarial networks have been utilized in a prior study [52] to
generate realistic dermoscopic skin images for various malignant
and benign conditions to overcome data skewness. Unlike
clinical images, dermoscopic images are captured while zooming
in to focus on the disease, thus skin tone was not a factor.

Generative adversarial networks have been also utilized to
generate clinical skin images for 8 skin conditions (eg, skin tag
and melanoma). In [53], a semantic map encoding each input
image was manually generated and given as part of the input
while training, testing, and generating images, which
significantly limited the system’s applicability. Although it was
possible to generate images with different skin tones using
semantic maps, there was no focus on the darker skin tones. In
addition, the ratio of generated images detected as real was
relatively low (0.30) and the ratio of correctly identifying skin
disease was 0.45. Moreover, the number of participants involved
in image quality assessment was insufficient to draw significant
conclusions.

To the best of our knowledge, to date, no published study has
focused on generating clinical images that reflect the diversity
of skin tones. Accompanied by the etiological factors and the
anatomic distribution of skin cancer in people of color, the
images that are generated will be a valuable resource that can
be utilized in education and research, in addition, to its use in
this study.

Limitations
The proposed system has limitations, the quality of the original
images is vital in generating high-quality images. The system
depends on publicly available data sets, thus there are data
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availability limitations; however, we will overcome this
limitation by implementing data-efficient and pretrained deep
learning methods. Compared with the real images of darker skin
tones, generated images might not include all factors that can
affect the appearance of the skin lesions on people of color. We
will mitigate this issue by reflecting the pigmentation on the
lesion consistently with the skin color, and the classification
model will be supplemented with textual features detailing key
clinical presentations of different lesions on darker skin tones.

Implications
Until a real-image repository collected from patients with
diverse skin tones becomes available, this study is the first step
to filling the gap regarding skin tone diversity toward the goal
of achieving racial equity in dermatology diagnosis. The
generated image bank will increase the inclusion of dark skin
images in dermatology research, the study will leverage the
capabilities of deep learning–based cancer detection methods
using these images. Our model can be trained in the future with
real images of dark skin once dermatology atlases with a large
number of dark skin pathologies become available.
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