Published on in Vol 9, No 7 (2020): July
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/17783, first published
.
Journals
- Aqajari S, Cao R, Kasaeyan Naeini E, Calderon M, Zheng K, Dutt N, Liljeberg P, Salanterä S, Nelson A, Rahmani A. Pain Assessment Tool With Electrodermal Activity for Postoperative Patients: Method Validation Study. JMIR mHealth and uHealth 2021;9(5):e25258 View
- Kasaeyan Naeini E, Subramanian A, Calderon M, Zheng K, Dutt N, Liljeberg P, Salantera S, Nelson A, Rahmani A. Pain Recognition With Electrocardiographic Features in Postoperative Patients: Method Validation Study. Journal of Medical Internet Research 2021;23(5):e25079 View
- Somani S, Yu K, Chiu A, Sykes K, Villwock J. Consumer Wearables for Patient Monitoring in Otolaryngology: A State of the Art Review. Otolaryngology–Head and Neck Surgery 2022;167(4):620 View
- Cascella M, Schiavo D, Cuomo A, Ottaiano A, Perri F, Patrone R, Migliarelli S, Bignami E, Vittori A, Cutugno F, Hu L. Artificial Intelligence for Automatic Pain Assessment: Research Methods and Perspectives. Pain Research and Management 2023;2023:1 View
- Subramanian A, Cao R, Naeni E, Aqajari S, Hughes T, Calderon M, Zheng K, Dutt N, Liljeberg P, Salanterä S, Nelson A, Rahmani A. Multimodal Pain Recognition in Postoperative Patients: A Machine Learning Approach (Preprint). JMIR Formative Research 2024 View
Books/Policy Documents
- Kanduri A, Shahhosseini S, Naeini E, Alikhani H, Liljeberg P, Dutt N, Rahmani A. Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing. View