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Abstract

Background: Prenatal exposure to air pollutants can increase the risk of adverse birth outcomes and susceptibility to a number
of complex disorders later in life. Despite this general understanding, the molecular and cellular responses to air pollution exposure
during early life are not completely clear.

Objective: The aims of this study are to test the association between air pollution and adverse pregnancy outcomes, and to
determine whether the levels of maternal and cord blood and of placental DNA methylation during pregnancy predict adverse
birth outcomes in polluted areas.

Methods: This is a birth cohort study. We will enroll pregnant healthy women attending prenatal care clinics in Tehran, Iran,
who are resident in selected polluted and unpolluted regions before the 14th week of pregnancy. We will calculate the regional
background levels of fine particulate matter (particles with a diameter between 2.5 and 10 μm) and nitrogen dioxide for all regions
of by using data from the Tehran Air Quality Control Company. Then, we will select 2 regions as the polluted and unpolluted
areas of interest. Healthy mothers living in the selected polluted and non polluted regions will be enrolled in this study. A maternal
health history questionnaire will be completed at each trimester. During the first and second trimester, we will draw mothers’
blood for biochemical and DNA methylation analyses. At the time of delivery time, we will collect maternal and cord blood for
biochemical, gene expression, and DNA methylation analyses. We will also record birth outcomes (the newborn’s sex, birth date,
birth weight and length, gestational age, Apgar score, and level of neonatal care required).

Results: The project was funded in March 2016 and enrollment will be completed in August 2017. Data analysis is under way,
and the first results are expected to be submitted for publication in November 2017.

Conclusions: We supposed that prenatal exposures to air pollutants can influence fetal reprogramming by epigenetic modifications
such as DNA methylation. This could explain the association between air pollution and adverse pregnancy outcomes.

(JMIR Res Protoc 2017;6(2):e29) doi: 10.2196/resprot.7114
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Introduction

Air pollution, the most pervasive environmental concern, is
estimated to cause around 800,000 deaths every year worldwide.
Among air pollutants, fine particulate matter is known as a
possible cause or exacerbator of diseases [1]. Previous studies
showed significant associations between fine particulate matter
(particles with a diameter between 2.5 [PM2.5] and 10 μm
[PM10]) and mortality from complex disorders such as
cardiovascular disease, cardiopulmonary disease, and lung
cancer [2].

The highest number of estimated annual premature deaths due
to fine particulate matter occurs in the developing countries of
Asia [3]. In most Asian cities, sulfur dioxide, nitrogen dioxide,
PM2.5 and PM10 levels are above the World Health
Organization (WHO) guidelines [3]. Although Tehran, Iran, is
rated as one of the world’s most polluted cities, there are few
reports on this matter [4,5]. Naddafi et al reported an annual

average of 71 μg/m3, which is 4.5 times the values recommended
by the WHO [4]. Based on a WHO estimation, the average

urban PM10 concentration in Iran is 68 µg/m3, about 3.4 times
higher than the WHO’s air quality guidelines, which is estimated
to cause about 9100 deaths per year [6].

Evidence shows that the elderly, children, and pregnant women
appear to be more susceptible than the general population to
the adverse health effects of air pollution, although people of
all age groups are affected by air pollution [7-12]. In addition,
growing evidence has been reported of the impact of
environmental pollution on adverse birth outcomes [13-15].
Birth outcomes are important for public health policy, because
health in early life is crucial for health later in life. Based on a
life course approach, most epidemiologic research on chronic
diseases has demonstrated that intrauterine and early life
conditions significantly affect the occurrence of complex
disorders that are of interest to public health [16,17].

Low birth weight, intrauterine growth retardation, and impaired
growth in the early years of life are known to increase mortality
and morbidity in childhood and the susceptibility of an
individual to several complex disorders later in life, such as
hypertension, coronary heart disease, and diabetes [15,18].
Despite this general understanding, the biological interactions
responsible for impaired development and adverse birth
outcomes are not completely clear.

The underlying mechanisms by which air pollutants may induce
adverse birth outcomes are not clear. The hypothesis of fetal
programming could explain some part of this interaction [19].
This hypothesis states that exposure to endogenous or exogenous
factors during a sensitive period can lead to responses at a
molecular and cellular level. However, environmental influences
on metabolism could persist even under normal conditions or
in the absence of stimulating factors [19]. Furthermore,
long-term or permanent alterations in the function of target cells
can lead to an increased risk for adult-onset diseases such as

type 2 diabetes mellitus, hypertension, cardiovascular disease,
and cancer [20-22]. The underlying biological mechanisms of
fetal programming can be explained by epigenetic modifications
such as DNA methylation [23-25], which is one important
regulatory mechanism in cell development and differentiation
[26,27]. It seems that maternal exposure to air pollutants is
associated with an epigenetic modification such as DNA
methylation. DNA methylation of cytosine residues is a heritable
epigenetic modification that can maintain specific gene
expression patterns in different cell types. Alterations in DNA
methylation due to metabolic exposure during gestation or after
birth may increase the susceptibility of an individual to complex
disorders such as cancer and metabolic disorders later in life
[28-30].

We systematically searched PubMed and SCOPUS up to
December 1, 2016 for literature addressing adverse pregnancy
outcomes (infant mortality, postneonatal mortality, birth weight,
intrauterine growth retardation, premature birth, birth outcomes,
and fetal development), pollution, and DNA methylation. This
systematic search identified a few studies that assessed air
pollution’s effect on global and gene-specific methylation
[31-36]; 2 studies focused on the association of DNA
methylation of repetitive elements and global DNA methylation
of placental tissue with air pollution in early life [32,36].

An environmental inputs birth cohort study [31] showed that
“epigenetic modifications in the mitochondrial genome,
especially in the MT-RNR1 region, substantially mediate the
association between PM2.5 exposure during gestation and
placental mtDNA content, which could reflect signs of
mitophagy and mitochondrial death.”

Another study [32] showed “a lower degree of placental global
DNA methylation in association with exposure to particulate
air pollution during early pregnancy”. It seems that exposure
to particulate matter during fetal development can lead to
alterations in genomic DNA methylation and affect gene-specific
DNA methylation and gene expression patterns during this
crucial time. Consistent with this hypothesis, recent evidence
from both human subjects and animal models has indicated that
exposure to airborne particulate matter is associated with
changes in DNA methylation patterns. Alterations of DNA
methylation patterns are postulated to modulate immune
responses and regulate inflammatory genes in response to
inhalation of particulate matter.

Among intracellular pathways, the glutathione pathway’s role
in the lung is to defend the airway epithelium from damage in
response to oxidants and inflammation [37]. Glutathione is a
tripeptide, γ-glutamyl-cysteinyl-glycine (GSH), and is defined
as the “body’s master antioxidant” [37]. At the molecular level,
nucleotide variation in the glutathione gene has been associated
with differences in susceptibility to adverse effects of air
pollutants on lung function and growth [38]. Emerging evidence
has shown that S-adenosylmethionine (SAMe) increases cellular
glutathione content and has an important role in the methylation
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cycle [39,40]. SAMe is the main cosubstrate involved in methyl
group transfers in the methylation cycle.

However, it is important to assess whether there is an association
between air pollution and adverse birth outcomes, how it is
modulated by alteration of genomic DNA methylation in the
fetus and placental tissue, and how the adverse effects of air
pollution on birth outcomes can be reduced by intervention
strategies.

Study Objective
The primary objective of the study is to compare the incidence
of adverse birth outcomes in a polluted urban area with that in
an unpolluted urban area.

The secondary objective is to investigate the association between
adverse birth outcomes and global changes in fetal and maternal
DNA methylation.

In addition, we aim to determine the association between gene
expression of GSH and alteration of global DNA methylation.

Methods

Study Design
This is a birth cohort study designed by the Endocrinology and
Metabolism Research Institute of Tehran University of Medical
Sciences. The research has been supported by the National
Institute for Medical Research Development of Iran (grant no.
940173).

Study Population
In our birth cohort study, we will enroll pregnant women
attending prenatal care clinics in two regions in Tehran, Iran:
the most polluted and the least polluted. The study population
is the group of eligible mothers living in these two regions who
agree to participate in this study. The inclusion criteria are as
follows: (1) resident in the selected polluted and unpolluted

regions, (2) stay-at-home mothers (3) presenting to the clinics
for prenatal care (4) before the 14th week of pregnancy who
are (5) healthy, (6) able to read, write, and understand Persian
at a middle school level and (7) willing to participate in
follow-up visits. The exclusion criteria are as follows: (1)
smoking mothers or living with a smoker, (2) having a history
of chronic disorders, including heart disorders, hypertension,
diabetes, hyperthyroidism, cancer, or autoimmune disorders
such as lupus, (3) taking any kind of corticosteroids, or
hyperglycemia or hypertension medications, (4) regularly taking
methyl donors such as folate or vitamin B12 before pregnancy,
or (5) having a multiple pregnancy. If a mother moves out the
selected region, is employed, or travels between polluted and
unpolluted regions regularly, she will be excluded from the
study. The participants in the two regions (polluted and
unpolluted) will be matched by age, pregestational body mass
index, and parity.

Written informed consent will be obtained from all study
participants in accordance with procedures approved by the
Ethical Committee of the National Institute for Medical
Research Development (IR.NIMAD.REC.1394.018) of Iran.
Consent is attained by a research midwife or a doctor who is
not directly involved in the routine perinatal care of the women.
A participant may subsequently decide to withdraw from the
study at any time without prejudice to their future care. In this
study, 40 participants would be required in each group to have
90% power to detect a difference of 4% at global DNA
methylation levels between the 2 groups. We anticipate
recruiting 80 participants to investigate the role of indoor and
outdoor air pollution on global DNA methylation levels of
maternal and cord blood and placental tissue. We estimate that
the dropout rate during the study will be 10%, so a total of 90
pregnant women will be needed for the duration of the study
with a minimum of 45 participants in each subgroup (Figure
1).
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Figure 1. Study design. Flow diagram of selection of pregnant women living in polluted and unpolluted regions of Tehran. PM2.5: particulate matter
with particle diameter 2.5 μm; PM10: particulate matter with particle diameter 10 μm.

Exposure Measurement
We will calculate the regional background levels of PM10,
PM2.5, and nitrogen dioxide for each mother’s home address.
The values of air pollutants will be obtained from the Tehran
Air Quality Control Company in 4×4 km grids.

To explore the potential effect of exposures during pregnancy,
we will calculate regional PM10 and PM2.5 concentrations
(micrograms per cubic meter) during various times: the mean
levels at 1 week before delivery, during the last month of
pregnancy, and for each of the 3 trimesters of pregnancy. We
will also calculate the exposure during the whole pregnancy.

To reduce bias due to exposure misclassification, we plan to
measure the PM2.5 and PM10, as individual levels, manually
by using Dylos DC1100 air quality monitors (Dylos Corporation,
Riverside, CA, USA) in each participant’s address (indoor).
Also, we will collect drinking water to measure contaminants
including hardness, nitrite, and nitrate.

Data Collection in Each Area

First and Second Visits
At the first visit (12-14 weeks of pregnancy), we will complete
study questionnaires with the participants to provide detailed
information on place of residence, socioeconomic status, sleep
habits, smoking status, health status, medical history, and

previous pregnancy history. At the second visit (28-32 weeks
of pregnancy), a maternal health history questionnaire will be
completed to record what medicines, herbs, or vitamins the
mother is taking and any adverse events and health problems
experienced. We will take the mothers’peripheral venous blood
after an overnight fast of 10-14 hours for biochemical, DNA
methylation, and gene expression analyses at the first and second
visits.

Third Visit (Delivery Time)
We will follow-up participants monthly until delivery. A food
frequency questionnaire will be completed to calculate nutrient
elements taken in. At the delivery time, we will collect maternal
and cord blood for biochemical, gene expression, and DNA
methylation analyses. We will also obtain samples of placental
tissue for gene expression and DNA methylation analyses.

Perinatal Outcomes
After delivery, we will record neonatal birth parameters such
as the newborn’s sex, birth date, birth weight and length,
gestational age, Apgar score, and level of neonatal care required
(normal newborn nursery, level 2 or level 3 intensive care). All
neonates will be assessed for congenital anomalies immediately
after birth. We will condense birth dates into a seasonal scale,
classified as cold periods (October to March) and warm periods
(April to September).
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Biochemical and Genetic Analyses

Blood Sampling
At each visit, we will collect blood samples for epigenetic and
genetic analyses and for biochemical analysis. The serum will
be divided into 2 aliquots: for routine prenatal tests (fetal blood
sampling, cholesterol, low-density lipoprotein, high-density
lipoprotein, triglyceride, and insulin), and for measuring
25-hydroxyvitamin D3 and bone markers (procollagen I
aminoterminal propeptide, osteocalcin, and C-terminal
cross-linked telopeptide of type I collagen). The separated sera
will be kept at –80°C until analysis.

Tissue Biopsy
The tissue biopsy will be taken from the fetal side, 1-1.5 cm
below the chorioamniotic membrane at a fixed location in
relation to the umbilical cord.

Global DNA Methylation Analysis
Genomic DNA will be isolated from placental tissue and the
mother’s peripheral venous blood using the standard method.

Briefly, DNA is extracted by the phenol method from whole
blood and homogenized placental tissues. We will determine
global DNA methylation as previously published [41,42]. Global
DNA methylation will be expressed as the percentage of
5-methyldeoxycytidine (5-mdC) versus the sum of 5-mdC and
deoxycytidine (dC): [5-mdC/(5-mdC + dC)]%.

Gene Expression Analysis
We will extract RNA from peripheral venous blood using a
Qiagen kit (QIAGEN NV, Venlo, the Netherlands). Gene
expression will be analyzed by using real time polymerase chain
reaction after complementary DNA synthesis. Candidate genes
include GSH, DNA (cytosine-5)-methyltransferase-1-alpha,
SAMe, brain-derived neurotrophic factor, synapsin I, AKT
serine/threonine kinase 2, SOS Ras/Rac guanine nucleotide
exchange factor 1, SOS Ras/Rac guanine nucleotide exchange
factor 2, and phospholipase C gamma 2) in maternal and
placental tissues.

Statistical Analysis
We will present categorical data as frequencies (%) and
numbers, and continuous data as mean and standard deviation.
We will use chi-square test to compare the prevalence of adverse
birth outcomes in the two regions. Student t test will compare
the differences in global DNA methylation levels in pregnant
women in the two regions (polluted and unpolluted) at each
trimester.

We will use Spearman correlation coefficients and linear
regression to assess the association of global DNA methylation
from blood and placental tissue with nitrogen dioxide, PM10,
and PM2.5 (data will be obtained from the Air Quality Control
Company).

We will construct a stepwise logistic regression model to
determine the independent effect sizes of nitrogen dioxide,
PM10, and PM2.5 exposures during pregnancy on global
methylation. An appropriate cutoff point will be determined for
DNA methylation levels, and then the levels will be defined as

a dichotomous variable. We will consider covariates for entry
into the model, including the newborn’s sex, maternal age
(years), gestational age (weeks), parity (1, 2, or 3), sleep
duration, dietary intakes of vitamin B12 and folate, regional
temperature, and season at conception.

The 2(∆∆Ct) formula will be used to calculate relative transcript
abundance. Student t test will be used to compare gene
expression differences of all included genes in blood and
placental tissue between the two groups, that is, pregnant women
who live in polluted and unpolluted regions. For multiple testing
corrections, we will use the false discovery rate [43,44]. We
will consider 2-tailed P values <.05 as statistically significant.
The same analyses will be performed in 2 subgroups from each
polluted region: participants with and without classroom
education.

Results

The project was funded in March 2016 and enrollment will be
completed in August 2017. Data analysis is under way, and the
first results are expected to be submitted for publication in
November 2017.

Discussion

To our knowledge, this is the first birth cohort study in Tehran,
which is rated as one of the world’s most polluted cities, to
measure global DNA methylation in pregnant women who live
in polluted and unpolluted regions and to investigate the
interaction between adverse pregnancy outcomes and air
pollution as an environmental factor. In addition, we plan to
improve women’s knowledge about how to reduce prenatal
exposure to air pollution and prevent adverse pregnancy
outcomes attributable to air pollutants.

Developmental adaptations due to epigenetic modification may
permanently “program” the fetus and may lead to adverse
pregnancy outcomes that form the origin of diseases that may
arise in adult life.

Based on the evidence, we supposed that prenatal exposures to
air pollutants can influence fetal reprogramming by epigenetic
modifications such as DNA methylation. This could explain
the association between air pollution and adverse pregnancy
outcomes.

Of note, there are some potential problems and limitations in
our study. Primarily, some confounding factors could have a
possible effect on blood and tissue DNA methylation, such as
some lifestyle-related factors, environmental tobacco smoke,
the season, and environmental temperature. To minimize the
impact of lifestyle and regional differences in methylation
patterns, we will adjust for the mother’s socioeconomic status,
maternal diet, and maternal sleep habits in our analysis. Also,
we will consider exposures to other air pollutants such as
second-hand smoke and indoor air pollution. We will exclude
mothers who smoke or live with a smoker. We will obtain the
temperature of each region from Air Quality Control Company
data. In addition, the differences in effect estimates of air
pollutants on DNA methylation could be further related to
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differences in maternal nutritional status. To control for the
impact of nutritional status, a food frequency questionnaire will
be filled out for all participants to measure special nutrients
associated with DNA methylation, such as folate and vitamin

B12. However, we can’t control for some unknown factors that
are associated with blood and tissue DNA methylation, as well
as levels of air pollutants.
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PM2.5: particulate matter with particle diameter 2.5 μm
PM10: particulate matter with particle diameter 10 μm
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