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Abstract

Background: Voluntary behaviors and socioeconomic factors, such as social jetlag and shift work, can lead to insufficient
or disrupted sleep, resulting in drowsiness among active individuals. In occupational and driving contexts, drowsiness poses
a serious safety risk by impairing alertness, slowing reaction times, and increasing the likelihood of accidents. Developing
automatic and easy-to-implement tools for drowsiness detection or prediction is essential in the management of sleepy patients
or in high-risk environments where sustained vigilance is critical.

Objective: This study aims to validate continuous or predictive methods for assessing drowsiness using automated analysis of
a limited number of electroencephalogram (EEG) channels.

Methods: Designed as a single-center, nonrandomized, single-group study, this investigation will evaluate drowsiness and
cognitive performance in 40 healthy volunteers exposed to 2 sleep deprivation conditions simulating real-world occupational
scenarios. The primary outcome will be the Objective Sleepiness Scale (OSS) and its automated analysis, with a focus
on its ability to measure objective wakefulness as assessed by the maintenance of wakefulness test (MWT). Secondary
outcomes will include multimodal resting-state EEG markers, subjective and objective sleepiness measures, performance on a
simulated driving task, attention, executive function, and vigilance assessments, as well as sleep quality, sleep quantity, and
mind-wandering. The influence of sociodemographic and clinical variables on the measurement and prediction of drowsiness
will also be systematically examined.

Results: This study received funding from Physip and ANR (Agence Nationale de la Recherche, National Research Agency)
in 2019, with ethical committee (Comité de Protection des Personnes, Committee for the Protection of Persons) approval in
May 2022. Recruitment began in March 2023 and was completed in May 2025, with a database lock in June 2025. Data
analysis started in June 2025 and is still ongoing.

Conclusions: By validating these novel EEG-based measures, this study aims to lay the groundwork for proactive strategies
for drowsiness management in occupational, transportation, and clinical settings.

Trial Registration: ClinicalTrials.gov NCT05453643; https://clinicaltrials.gov/study/NCT05453643
International Registered Report Identifier IRRID): DERR1-10.2196/83969
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Introduction

Sleepiness is a physiological and behavioral “need state”
or “need for sleep.” It plays a key role in the regulation
of the sleep/wake cycle, especially in triggering sleep onset
at the usual bedtime or during sleep deprivation. Sleepi-
ness facilitates the transition from wakefulness to sleep and
hinders the transition from sleep to wakefulness. “Physiologi-
cal sleepiness” [1], also known as sleep drive, results from
an imbalance between processes involved in the regulation
of sleep and wake states. It is orchestrated both by the
sleep homeostatic process, relying on the prior duration of
wakefulness and the prior amount of sleep, and by the
circadian rhythm, inducing a forbidden sleep zone at the end
of the evening and an imposed sleep zone at the end of the
night. Physiological sleepiness is modulated by interindivid-
ual differences (chronotype, age, and sex).

Manifest sleepiness [1] is the transformational effect
of underlying physiological sleepiness on behavior due
to voluntary or involuntary sleep deprivation, circadian
misalignment, or pathologies inducing excessive daytime
sleepiness. Manifest sleepiness is also referred to as drowsi-
ness, hypoarousal [2], or continuous nonimperative sleepi-
ness [3] by other authors. We will here use the generic
term “drowsiness” to qualify manifest sleepiness. Drowsiness
is characterized by an inappropriate waking behavior and
a lasting inadequate level of arousal, which results in an
inability to stay awake, difficulties in maintaining sustained
attention and vigilance (ie, brain fog), and affects judgment
and decision-making abilities and encourages risk-taking [4].
Drowsiness can thus induce functional consequences in terms
of both disability and accident risk [5-7], to the same extent
as the effects of alcohol consumption [8]. Drowsiness also
redirects attention to thoughts that are not related to the
task at hand [9]. This modification in attentional orientation,
known as mind wandering, also impacts cognitive perform-
ance [9,10]. Finally, introspective sleepiness [1] concerns
the individual’s self-assessment of their internal state of
sleepiness. Manifest and introspective measures are linked
because they both reflect underlying sleep pressure and
drowsiness and therefore may arise from the same under-
lying drive state [11]. However, drowsy people often fail
to accurately assess their level of drowsiness and therefore
overestimate their ability to make important decisions and
perform complex tasks [12], despite their decreased cogni-
tive abilities, which can lead to dangerous consequences.
Identifying and measuring real-time drowsiness or predicting
it in high-risk situations like working or driving is thus a
significant public health challenge [13,14].

Drowsiness can result from voluntary behaviors or
socioeconomic factors that lead to insufficient or disrup-
ted sleep [15], such as social jetlag [16] and shift work
[17]. Drowsiness assessment over time is mainly based on
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brain activity measurements (electroencephalogram [EEG])
[18]. EEG provides a direct and objective window into
neural correlates of alertness, unlike subjective measures
or sporadic performance-based assessments. EEG data can
reveal subtle transitions between wakefulness and drowsi-
ness that may otherwise go undetected. Thus, the primary
index of drowsiness, that is, the ability to stay awake, is
assessed during the maintenance of wakefulness test (MWT)
[19], an iterative electrophysiological test in which EEG and
electrooculogram (EOG) analysis allow the determination of
daytime sleep latency, identifying “global” daytime drows-
iness. Moreover, the behavioral consequences of drowsi-
ness —that is, impaired cognitive performance and reduced
vigilance, characterized by slowed reaction times and an
increased rate of commission errors (incorrect responses
made when no response is required)—are associated with
changes in EEG recordings, including episodic microsleep
intrusions, local sleep phenomena, and wake-state instability
[4,18]. Thus, EEG analysis, considered the “gold standard”
for direct and continuous monitoring of sleepiness [18],
represents the most promising way to detect drowsiness in
safety-sensitive contexts, such as transportation, health care,
and industrial operations, where lapses in vigilance can have
serious consequences.

Given the need to provide continuous measurement
to combat drowsiness in the workplace, the earliest EEG-
based methods developed to continuously assess spontane-
ous drowsiness in offline conditions include the Karolinska
Drowsiness Score [20]. This approach is designed to evaluate
sleepiness-related impairments in performance, particularly
in driving, by quantifying theta and alpha EEG activity
and/or identifying specific slow rolling eye movements via
EOG, resulting in a continuous sleepiness score ranging
from O (not sleepy) to 100 (very sleepy). Currently, numer-
ous EEG-based systems and algorithms—both offline and
online—have been proposed for the detection of drows-
iness. These methods often rely on various frequency
band ratios, including theta/beta, beta/(alpha+beta), theta/
(alpha+beta), (theta+alpha)/beta, (theta+ alpha)/(alpha+beta),
and (gamma-+beta)/(sigma+alpha) [14,21-23]. To enhance
classification accuracy, some systems integrate additional
physiological signals, such as electrocardiogram (ECG),
EOG, electromyogram (EMG), respiratory activity, or
behavioral data [14,23,24]. However, the practical application
of these systems remains limited. Most have been valida-
ted only under laboratory conditions, typically during early
afternoon sessions, whether after sleep deprivation or not,
and their deployment in real-world settings is constrained
by the large number of sensors required. To ensure opera-
tional feasibility, future development of EEG-based drowsi-
ness detection systems should prioritize the use of a minimal
number of sensors, particularly EEG derivations.
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The Objective Sleepiness Scale (OSS), developed by
Muzet et al [25], was designed to continuously monitor
drowsiness and classify sleepiness into 5 levels based on the
duration of alpha and/or theta EEG activity and the presence
of slow eye movements, assessed over 20-second epochs.
Despite its methodological clarity, the OSS is not widely
adopted in subsequent research. However, a recent study has
reported significant associations between OSS scores and
sleepiness-related variables, such as sustained attention and
driving performance [26], confirming the potential of the
OSS to provide a reliable assessment of sleepiness-related
cognitive impairments. The original implementation of the
OSS required 4 EEG and 4 EOG derivations, which limited
its applicability in operational settings. To address this, the
French company Physip, in collaboration with Muzet et al
[25], developed MEEGAWAKE, an algorithm for detecting
and assessing drowsiness. Based on the OSS, the algorithm
is capable of classifying the 5 stages of sleepiness, relying
exclusively on EEG signals recorded from only 2 deriva-
tions. The performance of this algorithm was validated on
15 participants in a driving simulator by comparison with
visual analysis conducted by a drowsiness reference expert
[27]. This streamlined approach facilitates easier integration
into workplace environments.

Nevertheless, current real-time spontaneous drowsiness
detection systems continue to face several challenges. First,
they typically require continuous wear by the operator, which
complicates their implementation in real operational settings.
Second, the detection of drowsiness often occurs too late to
prevent its functional consequences. Therefore, the develop-
ment of EEG-based tools allowing the prediction of drowsi-
ness and its behavioral consequences—rather than detecting
its presence—would mark a significant advancement in
ensuring operator safety. In experimental protocols, routine
EEG bio-calibrations, performed with eyes open and eyes
closed, are critical for assessing signal quality and character-
izing an individual’s resting-state brain activity. Resting-state
EEG recordings, under both eyes-opened and eyes-closed
conditions, have been used to evaluate task performance
and drowsiness levels [28-31]. An algorithm developed by
the University of Leipzig (VIGALL, The Vigilance Algo-
rithm Leipzig) can identify 7 states of somnolence during
a 5-minute resting-state EEG but requires the recording of
at least 19 EEG leads (25 recommended), making it unusa-
ble in real operating conditions [32]. However, these short
measures offer a promising avenue for prediction. Indeed, a
brief, iterative, and easy-to-administer resting-state assess-
ment could enable early identification of drowsiness and its
potential cognitive and behavioral impacts, thereby facilitat-
ing timely and effective preventive interventions.

The objective of this study is to validate—under
sleep deprivation conditions reflecting real-life occupational
scenarios (such as delayed, fragmented, or disturbed sleep,
typically experienced during night work, shift work, or
on-call duty)—the ability of the OSS and its automatic
analysis by the MEEGAWAKE algorithm to accurately
assess drowsiness and its associated cognitive and behavioral
consequences. In addition, the study aims to evaluate whether
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automatic analysis of resting-state EEG can reliably predict
drowsiness and its functional outcomes, independently of
the duration of prior wakefulness. Such predictive capability
could enhance risk assessment and contribute to the preven-
tion of sleepiness-related accidents in operational settings.

We hypothesize that both the OSS and resting-state
EEG, potentially adjusted for interindividual variability in
sleepiness susceptibility, can effectively measure and/or
predict drowsiness and its behavioral consequences, including
the inability to maintain wakefulness and impairments in
sustained attention and vigilance, regardless of the time of
day. This approach may provide a robust framework for
identifying and mitigating risks associated with drowsiness
in safety-critical environments.

Methods

Objectives

This study has 2 main objectives. This study’s first aim is
to determine whether the OSS criteria can accurately detect
manifest sleepiness, compared to the MWT, and to evalu-
ate its temporal accuracy in detecting drowsiness-induced
momentary behavioral outcomes, including driving perform-
ance, vigilance, and sustained and selective attention.

Second, this study aims to validate robust models based on
a multimodal EEG index, derived from resting-state activity
during bio-calibration, for predicting functional impairments
linked to drowsiness, particularly in driving performance,
vigilance, sustained, and selective attention.

Study Design

This research is designed as a preliminary investigation with a
single-center, nonrandomized, single-group study, conduc-
ted at the Sleep Department of the SANPSY laboratory,
Bordeaux, France.

Participants

Sample Size Calculation

This study is exploratory, since, to our knowledge, no other
study has used the OSS to predict manifest sleepiness. Thus,
because no data would allow us to statistically determine
the number of participants required, this number has been
arbitrarily set to 40 healthy volunteers. We believe this
number will facilitate preliminary exploration at both inter-
and intraindividual levels with an appropriate protocol.

Recruitment

Candidates are 40 healthy volunteers recruited from Bordeaux
University Hospital’s healthy volunteer database and through
advertisement via information flyers and internet recruitment.
Participants were screened with respect to health status
by a physician and filled out specific questionnaires with
professional clinicians. The candidates were informed that
they would receive financial compensation of €900 (US
$1062.02) for participating in the whole protocol, and the
physician provided full information about the study (design,
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potential risks and constraints, answers to potential questions)
before collecting the volunteers’ informed, written, dated, and
signed consent.

The eligibility criteria include the following: individuals
(1) aged between 20 and 60 years, with a BMI between
18 and 27, (2) with good French skills and the ability to
understand the study, and (3) who are nonprofessional drivers
with a valid driver’s license (obtained at least one year ago).
Individuals (1) experiencing severe psychiatric, neurologi-
cal, or medical pathology or under psychotropic or cardi-
otropic drug treatments, (2) afflicted by chronic insomnia
disorder, severe diurnal somnolence, or sleeping pathologies
that can induce excessive daytime somnolence, (3) declaring
substance dependency, alcohol abuse (>2 glasses/day) and/or
excessive consumption of coffee, tea, or caffeine-based drinks
(such as Coke, >5 cups/day), and (4) who perform night or
shift work or being on care or on-call duty during the last 72
hours before the experimental sessions were excluded from
the study.

Once included in the study, participants completed
the following self-administered questionnaires, addressing
specific items that serve as exclusion criteria for this study,
namely the presence of depression and/or anxiety disorders,
daytime sleepiness, and sleep-related disorders, such as
obstructive sleep apnea syndrome (OSAS) and restless legs
syndrome (RLS).

PHQ-4 (Patient Health Questionnaire) is a validated
and reliable tool designed to reveal propensity for anxi-
ety and depression [33]. Participants are asked to score 4
items reflecting their tendency to feel anxious (2 items) or
depressed (2 items) during the previous 2 weeks (on a Likert
scale ranging from O (never) to 3 (every day). A score above
2 on any item or a total score above 4 on the anxiety or
depression items will lead to the participant's exclusion.

ESS (Epworth Sleepiness Scale) is a common measure
used to assess daytime sleepiness [34]. Candidates must score
their ability to fall asleep in 8 different daily situations over
the past months (on a Likert scale ranging from O (never) to
3 (very high probability). A score over 11, reflecting a severe
diurnal somnolence, will lead to the participant’s exclusion.

STOP-BANG (snoring, tiredness, observed apnea, blood
pressure, BMI, age, neck circumference, and gender)
questionnaire evaluates the risk of OSAS through several
items [35]. A score over 5, reflecting a high probability of
being diagnosed with OSAS, will lead to the participant’s
exclusion.

The RLS questionnaire assesses the risk of being
diagnosed with this syndrome through 7 specific binary
questions (yes or no answer) [36]. A positive answer to some
items, reflecting a restless legs syndrome suspicion, will lead
to the participant’s exclusion.

Finally, before the selected candidates entered experimen-
tal procedures, additional questionnaires were used to assess
their chronotype and tendency to daydream (Table 1)(Table

1).
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The chronotype was assessed using the 19-question Horne
and Ostberg Morningness/Eveningness questionnaire, which
investigates life preferences (activity, wake/sleep cycle, and
meal), somnolence, and tiredness at certain times of the
day [37]. Scores vary from 16 to 86 and, with adaptation
to the individual’s age [38], allow for the identification of
evening persons (score <42 for those aged 20-44 years and
<53 for participants aged 44-60 years), morning persons
(score =58 and>64, respectively) and extreme chronotypes
(score <31 and =47 respectively, indicating highly evening
persons, and score =69, indicating highly morning persons
regardless of age). The French version [39] of the Munich
Chronotype Questionnaire [40] was also used. It is composed
of 7 questions investigating sleep habits on working days
and 7 questions investigating sleep habits on free days. The
sleep-corrected local time of midsleep on work-free days
(MSFsc) and midsleep on working days (MSWsc) [40] will
be identified, and the sleep-corrected social jetlag will be
calculated (MSFsc — MSWsc) [41].

The candidates’ tendency to daydream in everyday
situations was assessed using the Daydreaming Frequency
Scale (DDFS) [42]. Participants are asked to rate their
tendency to daydream during 12 common situations on a
5-point Likert scale (from 1 [very rare] to 5 [very frequent]).

After verification of inclusion and exclusion criteria,
participants went through the experimental schedule, which
was composed of 2 experimental sessions. Both sessions were
designed to increase the sleep pressure through alteration in
sleep quantity, while mimicking real-life work experiences.
Each candidate’s participation lasted 14-35 days, according
to the time lapse between the 2 experimental sessions (refer
to Table 1). All premature withdrawals (eg, withdrawal of
consent, inability to complete the protocol for medical or
logistical reasons) will be documented, including date, reason,
and any data collected up to the point of discontinuation.
Unless a participant requests complete removal of their data,
baseline characteristics and available measurements will be
retained for analysis. The study aims to include 40 partici-
pants completing the full protocol. Replacement of withdraw-
als may be performed, if necessary, but will be limited to
avoid overselection of highly motivated individuals (will
not exceed 20% of the initial target sample size). Base-
line characteristics of completers and noncompleters will be
summarized and compared, along with a brief description of
the reasons for withdrawal. Exploratory analyses may assess
whether baseline factors predict early withdrawal. Primary
analyses will be conducted on participants who complete the
full protocol (per-protocol analysis). When feasible, data from
partial completers will be included in exploratory mod-
els to maximize the use of available information. Mixed-
effects models or other appropriate statistical approaches will
handle repeated measures and missing data due to with-
drawal. Participant flow (screened, enrolled, completed, and
withdrawn) will be reported in a CONSORT (Consolidated
Standards of Reporting Trials)-style diagram, and all analyses
related to dropouts will be documented.
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Table 1. Schedule of participants’ enrollment and assessments.

Boitard et al

Study period
Interview Enrollment  Experimental schedule Close-out
Session 1: Session 2:
T-1to-15 T+1to T+14  T+7to T+30  T+7 to T+30
Timepoint days TO days days days
Recruitment
Information about the study v
Eligibility screen v v
Informed consent v
Clinical examination v
Inclusion self-questionnaires (PHQ-42, ESSP, STOP- V4
BANG¢, RLS)4
Individual characteristics (chronotype, daydreaming) v
Assessments
Actimetry
Polysomnography v v
Continuous wake EEG® recordings (OSsf, resting state v
EEG)
Karolinska Sleepiness Scale v v
Driving simulation v v
Maintenance of wakefulness test v v
Cognitive tests v N4
Conscient Experience Characterization v v

4PHQ-4: Patient Health Questionnaire-4.
PESS: Epworth Sleepiness Scale.

“STOP-BANG: snoring, tiredness, observed apnea, blood pressure, BMI, age, neck circumference, and gender.

dRLS: Restless Legs Syndrome.
®EEG: electroencephalogram.
fOSS: Objective Sleepiness Scale.

Experimental Timeline

The experimental schedule was composed of 2 experimental
sessions, both designed to increase sleep pressure by altering
sleep quantity prior to behavioral testing. Each candidate
participated in both sessions in the same order. The first
session lasted 3 days and was structured with a fragmented
sleep schedule to simulate nocturnal on-call duty. The second
session lasted 4 days with 2 full nights of sleep deprivation,
separated by a 4-hour recovery period, to simulate a night
shift (Figure 1). As shown in Figure 1, gray rectangles
indicate periods of recorded sleep, white rectangles corre-
spond to wake periods, hatched rectangles indicate night sleep
deprivation.

Several behavioral tests, with established validity for
assessing sleepiness and its impact on cognitive performance
(manifest sleepiness), described in the following section,
were conducted during both sessions to assess the effects of
sleep alteration on introspective sleepiness, on the capacity
to remain awake (reflecting sleep pressure), on driving
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performance, on attention and vigilance, and on the mind-
wandering experienced during the tests (Figure 2). This figure
shows colored arrows, which indicate, before and/or after
each test, the registration of the resting state EEG (bio-cali-
bration lasting 2 minutes [BC2], red arrows) and the scoring
by the participant of their introspective sleepiness level (KSS,
blue arrows) and of their mind wandering during the test
(CEC, yellow arrows). The pause from 25-85 minutes allows
lunch or dinner to be served to the participants during
the relevant blocks (starting at noon and 8 PM). Colored
rectangles correspond to the different tests composing the
4-hour test block.

EEG was recorded throughout the entire experimental
protocol, during the rest periods to assess sleep duration
and quality in both ambulatory and laboratory conditions,
and throughout the tests to allow for drowsiness assessment
(through OSS visual and automatic scoring). Resting state
EEG was recorded during regular bio-calibrations (BC2 or
BCS5 lasting 2 or 5 minutes, respectively).
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Figure 1. Study experimental workflow. (A) Experimental session 1 designed to create sleep deprivation conditions that simulate on-call duty. (B)
Experimental session 2 designed to produce sleep deprivation conditions simulating 2 successive working nights.
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Figure 2. Timeline of one block of tests and questionnaires. CPT: continuous performance test; CEC: Conscient Experience Characterization; EEG:
electroencephalogram; KSS: Karolinska Sleepiness Scale; MWT: maintenance of wakefulness test; PVT: psychomotor vigilance task; TAP: Test of

Attentional Performance; BCS5: 5-minute bio-calibration.
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Sleep and Wake Monitoring Setup

Sleep parameters were assessed using ambulatory and
laboratory  polysomnography coupled with actigraphy.
Activity was monitored using a wrist-worn accelerometer
(GT9X Link, ActiGraph). Ambulatory polysomnography
was performed using an EMBLA Titanium system (Natus;
sampling frequency 256 Hz; 16-bit resolution). The montage
included 2 EEG channels (Cz and Pz). Laboratory polysom-
nography was recorded with an Embla NDx amplifier and
stored using Natus SleepWorks software (sampling frequency
256 Hz; 16-bit resolution). The montage included at least 2
EOG channels, 1 EMG channel, 6 EEG channels (F4, C4, 02,
Cz,Pz,and Al), and 1 ECG channel.

While awake, participants were equipped with a gel-
based active electrode system for EEG (Acticap Slim, Brain
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Products) connected to a compact wireless EEG amplifier
LiveAmp (Brain Product: 24-bit resolution). The montage
included 8 EEG derivations, namely Fz, Cz, Pz, C4, 02, C3,
O1, and P3, and 4 vertical and horizontal EOG. All signals
were acquired using a sampling frequency of 500 Hz.

Description of the Tests

Introspective  sleepiness was investigated through the
Karolinska Sleepiness Scale (KSS), a subjective scale
assessing the level of sleepiness during the past 10 minutes
[43]. Participants are required to rate their ability to main-
tain wakefulness on a Likert scale (from 1 = “perfectly
awake” to 9 = “severely somnolent, cannot stay awake”).
This score is known to correlate well with EEG measure-
ments and cognitive and behavioral performances linked to
the candidate’s ability to maintain wakefulness [44].
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The ability to stay awake under sleep-promoting condi-
tions was monitored through the MWT, which is considered
the gold standard in the measurement of manifest sleepiness
[18,45]. The MWT is a 40-minute trial during which the
participant is in a comfortable position in bed, in a quiet,
dimly lit room. At the beginning of each trial, the candi-
date is instructed to stay awake and combat against sleep,
to keep their eyes open, and to look straight ahead, with-
out looking at the light. During the test, visual analysis of
the polysomnographic recording allows for monitoring the
participant’s state, and the test is stopped when unequivocal
sleep is detected (defined by 3 consecutive epochs of stage
N1 sleep or 1 epoch of any other sleep stage, according to the
American Academy of Sleep Medicine (AASM) recommen-
dations [46]).

Driving performance was assessed during a driving
simulation procedure, as it provides an ecological approach
that is commonly used to assess the effects of sleepi-
ness on complex cognitive performance and safety, using
the fixed-base INRETS-MSIS SIM2 (Institut National de
Recherche sur les Transports et leur Sécurité — Modélisa-
tions, Simulations et Systémes d’Information pour la Sécurité
— Simulateur version 2; National Institute for Transport and
Safety Research — Modeling, Simulation, and Information
Systems for Safety — Simulator version 2) driving simu-
lator [47]. In healthy individuals, this simulator has been
shown to effectively assess nocturnal driving impairment in
a dose-response design, considering extended wakefulness
and driving duration, compared to real driving conditions
[48]. The driving simulator is composed of a computer
and a video game steering wheel with no force feedback
applied. The participant’s head is positioned at 60 cm in
front of the screen. The resolution of the visual scene was
1024x768 pixels, and the update rate was 60 Hz. The
simulator generates a highway driving scenario on a 19-inch
screen. The car’s speed was fixed by the experimenter at
130 km/h, and participants were instructed to drive in the
center of the right lane. The test lasts for 20 minutes, during
which the participant must maintain the car’s trajectory on
a monotonous 2-lane highway (reconstruction of the French
A62 highway, without any scenery or vehicles).

To evaluate the impact of sleepiness on cognitive
performance of increasing complexity, we included 3 tasks
ranging from basic attentional measures to more demand-
ing cognitive functions. First, the participants completed
the Psychomotor Vigilance Task (PVT), a widely used and
validated tool for quantifying manifest sleepiness, particu-
larly through its effects especially on sustained attention
and somewhat less on vigilance [18]. The test consists of a
one-choice serial reaction time task and was conducted using
PC-PVT software (Biotechnology HPC Software Applica-
tions Institute), a freely available package for PVT testing,
analyzing, and visualizing on a PC, whose performance is
comparable to the PVT-192, the gold standard for measur-
ing PVT [49]. The PC-PVT software [50] was installed on
a desktop computer running under Windows 10 and equip-
ped with a mouse. The test session lasts 10 minutes, during
which a visual stimulus randomly appears on a screen, with
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interstimulus intervals varying from 2 to 10 seconds. The
participant is asked to react as quickly as possible (by a
mouse click) to make the stimulus disappear.

The Conners continuous performance test II (CPT-II) is
a Go/No-Go task that evaluates the participant’s ability to
maintain sustained attention and to discriminate relevant
stimuli [51]. The test assesses inhibitory control, which is
known to be highly sensitive to excessive daytime sleepiness
[52-54]. The CPT (continuous performance test) paradigm
is based on monitoring and responding to regular targets
(here, all alphabet letters except the “X”), while withholding
the response to a specific infrequent nontarget (letter “X”).
CPT software (Multi-Health Systems Inc, version 5.2) was
installed on a desktop computer running under Windows 10
and equipped with a keyboard. The test session lasts for 15
minutes, and the participant is asked to push the space bar
when any letter is displayed on the screen, except for the
letter “X” (target stimulus).

The Vigilance Test of Attentional Performance (TAP) is
a rarely used animated line test, which measures the ability
to focus and to maintain mental effort and vigilance on a
monotonous task during a 30-minute period [55]. The test
displays a horizontal line going up and down on a screen at
an irregular speed, and from time to time, this line oscillates
with a greater amplitude. TAP Vigilance (Psytest) software
was installed on a desktop computer running under Windows
10 and equipped with a specific external response button. The
participant is asked to push the response button when they
notice a difference in the line oscillation amplitude (target).

Finally, mind-wandering during completion of the test was
assessed through a subjective scale, the Conscient Experience
Characterization (CEC) [56]. At the end of the cognitive tests,
participants were asked to rate their focusing level during the
previous task, using a scale of five options: (1) fully focused
(attention and thoughts entirely dedicated to the task), (2)
focus interference related to the task (attention and thoughts
distracted by task characteristics or by their performance),
(3) external distraction (attention and thoughts distracted by
environmental stimuli with no relation to the task), (4) mind
wandering (not focused, with thoughts disconnected from the
task or the environment), and (5) empty mind (not focused,
without any particular thoughts).

Experimental Session 1: Fragmented
Sleep

This session lasted for 3 consecutive nights and days, during
which sleep was recorded. In order to induce sleep pressure
on day 3, the third night was fragmented (with 2 imposed
wake-ups, during which attentional and vigilance tests were
carried out). Three blocks of behavioral tests were conducted
during the third day (Figure 1A). One block of tests is 4 hours
long and includes, in a fixed order, a driving simulation,
cognitive tests, evaluation of sleep pressure, and self-assess-
ments of drowsiness and mind-wandering, while continuous
EEQG is recorded (Figure 2).
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The detailed schedule of days and nights is organized as

follows:

1. Night 1: In the evening before the first night, the
participants arrived at the laboratory to be equipped
with Ag-AgCl electrodes (2 EEG derivations: Cz and
Pz, connected to the EMBLA Titanium) to measure
their sleep quantity and quality. They returned home for
the first night, went to sleep, and woke up according to
their usual schedule.

2. Day 1: After waking up and removing the sleep
recorder, the participants carried out their usual
activities throughout the day before returning to the
laboratory in the evening, where training for the
cognitive tests and driving simulation was provided.

3. Night 2: The participants were equipped with Ag-AgCl
electrodes (6 EEG derivations: F4, C4, 02, Cz, Pz,

Al, 1 EMG, 2 EOG, and 1 ECG) connected to the
Embla NDx amplifier to measure their sleep quantity
and quality. They spent the night in the laboratory, went
to sleep, and woke up according to their usual schedule.

4. Day 2: After waking up, the participants either stayed in
the laboratory or went to their regular activities before
returning in the evening.

5. Night 3: The participants were re-equipped with
polysomnographic sensors (as during night 2) and went
to bed by midnight. They were awakened twice during
the night (2 hours and 4 hours after bedtime) for 30
minutes, during which they underwent the PVT and
CPT tests to measure their vigilance along with their
ability to maintain sustained attention.

6. Day 3: After waking up at 7 AM, the equipment
was removed, and the participants were equipped with
a gel-based active electrode system for EEG. The
participants underwent 3 test blocks. Block 1 occurred
from 8 AM to noon, block 2 from noon to 4 PM, and
block 3 from 4 PM to 8 PM After the last block, the
EEG helmet was removed, and the participants either
stayed in the laboratory for a recovery night or left the
hospital, if accompanied, with a recommendation to go
home for a recovery night.

Experimental Session 2: Sleep
Deprivation

This session lasted for 4 consecutive nights and 3 days,
during which sleep was recorded. During the second day, the
participants began a series of six 4-hour test blocks, lasting
24 hours and leading to a total sleep deprivation during the
third night. On the third day, the participants had a morning
recovery sleep period (4 hours) and began a new night of
total sleep deprivation with a series of three 4-hour test blocks
during the fourth night (Figure 1).

The detailed schedule of days and nights is organized as

follows:

1. Night 1: In the evening before the first night, the
participants entered the laboratory to be equipped with
Ag-AgCl electrodes (2 EEG derivations: Cz and Pz)
connected to the EMBLA Titanium to measure their
sleep quantity and quality. They returned home for the
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first night, went to sleep, and woke up according to
their usual schedule.

2. Day 1: After waking up and removing the sleep
recorder, participants carried out their usual activities
throughout the day before returning to the laboratory in
the evening.

3. Night 2: The participants were equipped with Ag-AgCl
electrodes (6 EEG derivations: F4, C4, 02, Cz, Pz,

Al, 1 EMG, 2 EOG, and 1 ECG) connected to the
Embla NDx amplifier to measure their sleep quantity
and quality. They spent the night in the laboratory and
went to bed by midnight.

4. Day 2 and Night 3: After waking up, the equipment
was removed, and the participants had breakfast before
being equipped with a gel-based active electrode system
for EEG. Then, the participants completed six 4-hour
test blocks. Block 1 occurred from 8 AM to noon, block
2 from noon to 4 PM, block 3 from 4 PM to 8§ PM,
block 4 from 8 PM to midnight, block 5 from midnight
to 4 AM, and block 6 from 4 AM to 8 AM. After the
last block, the EEG helmet was removed.

5. Day 3: The participants underwent a morning recovery
sleep period (from 9 AM to 1 PM) during which they
were equipped with the Ag-AgCl electrodes and sleep
recorder, as described for night 2, to measure their sleep
quantity and quality. After waking up, sensors were
removed, and the participants remained in the labora-
tory without sleeping during the afternoon.

6. Night 4: The participants were re-equipped with the
gel-based active electrode system for EEG and wireless
EEG amplifier, as described for Day 2 and Night 3,
and underwent a new series of three 4-hour test blocks.
Block 1 occurred from 8 PM to midnight, block 2 from
midnight to 4 AM, and block 3 from 4 AM to § AM
After the last block, the EEG helmet was removed.

7. Day 4: The participant either stayed in the laboratory
for a 5-hour recovery sleep or left the hospital, if
accompanied, with a recommendation to plan a sleep
recovery night at home.

Protocol Assistant

Protocol Assistant is a software tool developed by Physip
to manage the timeline of the various behavioral tests
and questionnaires during the 4-hour block and to ensure
synchronization with the EEG and EOG acquisition per-
formed by a Brain Products amplifier (ie, LiveAmp). It is
designed to provide event markers (start and end of each test)
with a time precision of approximately 0.1 seconds, without
requiring any programming skills. Additionally, it allows
for the collection and timestamped recordings of responses
to self-assessment questionnaires (KSS and CEC) and any
comments the experimenter may make during the experiment.

After a preliminary configuration phase, during which
the timeline for tests and questionnaires is set once and for
the 4-hour block, the software has to be launched for each
acquisition. It opens a graphical interface with windows on
2 separate screens (one for the experimenter and one for the
participant), enabling the protocol to be run and the test and
questionnaire instructions to be presented to the participant,
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in written and audio form, while managing the acquisition of
EEG signals realized by the EEG amplifier.

The software automatically adds time markers on the fly
to the protocol steps and enables the experimenter to follow
the progress of the protocol via a graphical timeline and via
the list of steps, to visually monitor the tracings in real time,
insert customizable predefined event markers, and interrupt or
resume the progress of the protocol.

Outcome Measures

Primary Outcome Measure

The primary outcome measure corresponds to the OSS score,
which relies on the analysis of electrophysiological variables
to assess the instantaneous drowsiness state, corresponding to
the participant’s level of sleepiness. The OSS score, ranging
from O (full alertness) to 4 (very drowsy), is assigned every
20 seconds, based on specific EEG activity (amount of beta,
alpha, and theta waves) observed simultaneously in 2 regions
of the brain during each epoch, and accompanied by distinct
eye blinks and movements (normal or slow). An OSS score
of 0 corresponds to continuous beta activity, with no alpha
or theta activity and no slow eye movements. In contrast,
an OSS score of 4 is characterized by the presence of alpha
and/or theta rhythms for more than 10 cumulative seconds,
associated with slow eye movements.

The OSS was scored both manually, by a trained experi-
menter—based on EEG (Fz, Cz, Pz, C4, 02, C3, O1, and P3)
and EOG (vertical and horizontal) recordings —and automati-
cally, by the MEEGAWAKE algorithm—based on EEG (Cz
and Pz)— every 20 seconds throughout all behavioral tests, to
reflect the spontaneous drowsiness states.

The MEEGAWAKE algorithm uses data-driven criteria
to cope with interindividual variability. After an initial
artifact rejection step relying on detecting both tempo-
ral and frequential abrupt variations or nonphysiological
behavior, the analysis step aims to determine recording-spe-
cific thresholds based on EEG power ratios in the usual
frequency bands. In addition to this frequency analysis, a
temporal localization of EEG events is performed to analyze
burst activity. Based on the results of this analysis, the final
step is to classify the 20-second epochs into OSS drowsiness
states.

During MWT, sleep onset is defined as the start of the
first epoch scored 3 or 4. OSS sleep latency (OSS latency) is
defined as the time from lights out until the start of the first
epoch scored as 3 or 4 (expressed in minutes).

Secondary Outcome Measures

The secondary outcome measures are the following: resting
state EEG, longer resting state EEG, objective sleep quantity
and quality, objective measurement of manifest sleepiness,
driving performance, cognitive performance, and subjective
sleepiness and mind wandering.

Resting state EEG, recorded through bio-calibrations, is
a simple procedure in which participants are placed in a
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quiet room and asked to relax while looking at a picture
on the wall, to keep their eyes open for 1 minute, refrain-
ing from blinking as much as possible, and then close their
eyes for 1 minute, without moving (BC2). EEG and EOG
channels are recorded continuously during bio-calibrations.
In the preprocessing step of the signal analysis, standard
signal processing techniques will be used, including notch
filtering to remove power-line interference and bandpass
filtering to isolate specific frequency subbands. The EEG
data will be segmented into 4-second epochs to minimize the
effects of nonstationarity in longer signal segments. Spectral
power across different EEG frequency subbands and the
frequency centroid will be computed for each channel under
both eyes-open and eyes-closed conditions. To mitigate the
influence of outliers, the median spectral power across epochs
within each session will be used. EEG signal processing will
be performed using the Python (Python Software Foundation)
MNE toolbox (magnetoencephalography and electroencepha-
lography in Python). Following preprocessing, feature vectors
representing each session will be constructed, comprising
multiple EEG-derived features. These feature vectors will
then serve as inputs for a machine learning model to identify
the most informative features for distinguishing participants’
levels of drowsiness, cognitive, and driving performances as
quantified by the different tests conducted after the bio-cali-
brations.

Longer resting state EEG, recorded through a longer
bio-calibration, is a procedure that remains the same as
described for BC2, but here the participants are asked to keep
their eyes open for 5 minutes (BCS). During the 5 minutes
with eyes open, the Fz signal is analyzed in 2-second epochs,
each characterized by features including the signal magni-
tude and spectral power (Fast Fourier Transform, Hanning
window) in the frequency bands delta (0-4 Hz), theta (4-8
Hz), alpha (8-12 Hz), sigma (12-16 Hz), and beta (16-50
Hz). After automatic artifact and blink removal using both
temporal and frequential criteria, the spectral power of the
artifact-free Fz signal will then be computed in the 6-9 Hz
band [57] for each 2-second artifact-free epoch. The resulting
distributions of spectral power values will then be charac-
terized by their mean, SD, and median. The mean spectral
power will be the result of BC5. To compare values between
individuals while controlling for interindividual variability, a
participant’s test values are normalized by their median.

Objective sleep quantity and quality, measured through
polysomnography recordings and analyzed by ASEEGA
software (Physip), are based on an automated analysis of a
single EEG channel (Cz-Pz) using a combination of multiple
signal processing and classification techniques [58-60]. The
preprocessing phase notably aims to adapt the analysis criteria
to cope with EEG interindividual variability. The analysis
step uses both frequency and temporal techniques to retrieve
numerous 30-second-long and 1-second-long features as well
as performing the detection of several sleep microstructural
events. The classification phase then reduces and summarizes
this information by scoring sleep EEG into conventional sleep
stages using artificial intelligence techniques, such as pattern
recognition and fuzzy logic. This method was validated in
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healthy individuals and demonstrated high agreement with
visual scoring realized by an experienced scorer, between
82.9% and 96%, depending on the number of vigilance stages
considered, allowing its application in several research studies
[59,60]. Classical sleep parameters like the total sleep time
(TST: the sum of all sleep stages, expressed in minutes),
sleep onset latency (SOL: the time, in minutes, from lights
out to the first recorded epoch of any sleep stage, N1, N2,
N3, or Rapid Eye Movement), sleep efficiency (calculated
as the ratio of TST to total time in bed, multiplied by 100),
wake after sleep onset (calculated as the total time in bed
minus the TST), and time spent in stages N1, N2, N3, and
Rapid Eye Movement (expressed as a percentage of TST and
in minutes) will be computed. Objective sleep quantity and
quality will also be measured through actigraphy recordings
and analyzed by ActiLife software (ActiGraph) using the
Cole-Kripke algorithm. The sleep outcomes calculated were
TST (minutes), SOL (minutes), and sleep efficiency (%).

Objective measurement of manifest sleepiness will be
assessed during the MWT and analyzed visually by an
experienced technician according to the AASM criteria [61].
Objective sleepiness is quantified by the SOL (minutes),
defined as the time from lights out to the start of the first
epoch of any sleep stage (N1, N2, N3, or rapid eye move-
ment). If the patient succeeds in staying awake during the
entire duration of the test, the SOL is set to 40 minutes.

Driving performance, assessed using a driving simulator,
is quantified by the variability of the car’s lateral position
(standard deviation of lateral position [SDLP; cm]), indicating
weaving of the car, and the number of inappropriate crossings
of lateral highway lane markers (Inappropriate Line Cross-
ing).

Cognitive performance is assessed using the PVT, the
CPT, and the TAP. For the PVT, outcome measures include
mean reaction time (RT; milliseconds), the fastest and slowest
10% of RTs, and the number of lapses (RT>500 ms). For
the CPT, outcomes consist of the mean RT (measuring
the response execution process), the number of omissions
(failure to respond to target stimuli), and commission errors
(responses given to nontarget stimuli). For the TAP, outcomes
include mean RT and the number of omissions (missed
targets).

Subjective sleepiness and mind wandering are assessed
using the KSS and the CEC, respectively. The outcome
measure for both is the score on the corresponding scale.

Data Analysis

Statistical Analysis

The analyses will be performed using R version 4.4.2
(R Foundation for Statistical Computing) and IBM SPSS
Statistics version 27 (IBM Corp) software for Windows. The
normality of the data will be assessed using the Shapiro-Wilk
normality test, the equality of variance will be evaluated
with the Levene test, and the sphericity of the data will be
checked using the Mauchly test. Continuous variables will be
expressed as means and categorical variables as proportions
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(%). P values less than .05 will be considered statistically
significant.

OSS Criteria Accuracy Evaluation

Considering that the collected data consist of either contin-
uous linear data, counts, or proportions, it is very likely
that some of the data will not follow a normal distribution.
Therefore, the use of parametric tests may be compromised.
Moreover, our outcomes are measured repeatedly over time
and may be highly dependent on interindividual variability.
Thus, we will use a generalized linear mixed model to explore
our first main objective, with relevant interindividual data
incorporated into the model if needed (including patient ID,
age, gender, daydreaming frequency, chronotype, and sleep
history).

Using such models, OSS and MWT sleep onset latencies
will be compared over time in order to determine whether
OSS criteria can accurately detect drowsiness compared to the
MWT.

As a second step, behavioral performance based on the
OSS score will be assessed to determine whether instantane-
ous drowsiness states, identified by OSS, can detect momen-
tary functional impairments. The evaluation of OSS temporal
accuracy will be conducted by selecting OSS scores greater
than O at a time T (20-second epoch), surrounded by lower
score values (at T-20 seconds and T+20 seconds) [26].
Behavioral outcomes will then be compared using a general-
ized linear mixed model between T-20 seconds, T, and T+20
seconds of selected OSS scores.

Predictive Models Using Resting State EEG

To predict drowsiness-mediated behavioral performance,
the proposed model leverages resting-state EEG recordings
obtained prior to task execution. The primary behavioral end
point is SDLP, which is dichotomized into 2 classes: “Good
Performance” and “Poor Performance” based on the 33rd and
66th percentiles of the SDLP distribution. This percentile-
based approach ensures approximately balanced class sizes,
and the resulting thresholds and participant categorizations
were validated by domain experts.

Considering the nonstationary nature of EEG signals and
their susceptibility to interindividual variability, machine
learning methods capable of handling such variability will be
prioritized. Feature extraction and selection will be guided by
SHAP (Shapley Additive Explanations) values computed on
the training set. Channels and features with high importance
will be selected and then evaluated on a separate validation
subset within each fold. Performance will be reported on a
completely unseen test set to prevent leakage.

A leave-one-subject-out cross-validation strategy will be
applied to provide a robust evaluation under intersubject
variability. Within each fold, to optimize hyperparameters
and feature selection, a nested validation set will be defined
by randomly selecting a subset of participants from the
training pool (ensuring no overlap with the test participant).
All preprocessing, feature selection, and hyperparameter
tuning will be performed exclusively on the training and
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validation subsets, with the test participant held out to avoid
information leakage.

Classification will be performed using CatBoost, an
ensemble-based gradient boosting algorithm suitable for
tabular and heterogeneous data. To enhance generalizabil-
ity and benchmark the findings across distinct algorithmic
frameworks, additional classifiers, including radial basis
function support vector machine, decision trees, logistic
regression, and extreme gradient boosting, will also be
applied. Demographic and behavioral covariates (eg, age,
gender, chronotype, daydreaming frequency, and sleep
history) will be optionally included to account for residual
interindividual variability.

Model performance will be evaluated using accuracy,
precision, recall, and F{-score, reporting both macroaveraged
and weighted-averaged metrics to account for potential class
imbalance. Comparing these metrics allows assessment of
classifier sensitivity to imbalanced classes. Bootstrapping and
permutation testing will be applied to evaluate the statisti-
cal significance and robustness of the results, ensuring that
predictive performance is not due to chance.

Ethical Considerations

This study was approved by the French National Ethics
Committee (Consultative Committee for the Protection of
Persons participating in biomedical research, CPP Sud Est
V, on April 14, 2022, under the number N° SI RIPH 2G:
22.00521.000045) and was registered in ClinicalTrials.gov
(NCT05453643). The National Agency for the Safety of
Medicines and Health Products was notified about this study.
All staff members involved in this study ensure that the full
research was conducted in accordance with ethical guidelines
and regulations on research involving human participants
(as stipulated in the Good Clinical Practices [International
Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use], law no. 2022-323 of March
4, 2022, on research involving human participants, and the
Declaration of Helsinki).

All participants gave their written informed consent prior
to inclusion in the study. This study complies with the
General Data Protection Regulation (GDPR) and the MR-001
National Commission on Informatics and Liberty reference
methodology, which require data to be deidentified after
collection (for privacy protection). Personal information,
such as participants’ names, addresses, and medical status,
will thus be exclusively managed at the examination center
and not provided to third parties. All data collected were
deidentified, participants being assigned a unique study code,
and any information pertaining to personal details is kept
in locked filing cabinets in the SANPSY laboratory, only
accessible to authorized research staff directly running the
study. Relevant data are entered into an electronic database
using only the study codes assigned to each participant and
are securely stored on an encrypted and secure server made
accessible to research staff directly running the study through
password-protected computers.
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The risk of adverse events is considered low, and the
study procedure can be canceled at any time. During the
study, participants were monitored by psychologically trained
staff, which ensured fast communication of complaints and an
immediate response. Volunteers received financial compensa-
tion of €900 (US $1062.02) for their participation in the
study. The final results of this study will be disseminated
through peer-reviewed publications and conferences.

Results

This study was funded by Physip and ANR (Agence
Nationale de la Recherche, National Research Agency)
in 2019, with ethical committee (Comité de Protection
des Personnes, Committee for the Protection of Persons)
authorization in May 2022. Candidate recruitment began in
March 2023 and was completed in May 2025 (N=40), with a
database lock in June 2025. Data analysis started in June 2025
and is still ongoing.

Discussion

Principal Findings

The objective of this study is to validate a new, easily
implementable spontaneous drowsiness measurement, derived
from OSS criteria and based on the automatic analysis of
a limited number of EEG channels, able to reflect manifest
drowsiness, particularly the ability to stay awake and the
associated cognitive and behavioral consequences, regardless
of the time of day. In addition, the study aims to evalu-
ate whether iterative resting-state EEG can reliably predict
drowsiness and its functional outcomes, independently of
the prior duration of wakefulness. These measurements will
enable the early assessment of drowsiness, allowing for the
prediction of the ability to maintain wakefulness and/or of
both simple and/or complex cognitive impairments associated
with drowsiness.

Effortless Installation

The key advantage of our EEG-based drowsiness detection
system lies in its design for real-world applications by
prioritizing a minimal number of EEG channels (ie, 2) and
using short, iterative measurements. By reducing hardware
complexity and optimizing data collection, our approach
ensures practicality under operational conditions, making it
suitable for monitoring in real-time scenarios. This approach
not only enhances user comfort and system efficiency but also
facilitates seamless integration into sophisticated driver and
pilot monitoring systems, contributing to improved safety and
performance.

Benefits of 24-Hour EEG

As part of our study protocol, we perform continuous
EEG-based monitoring of drowsiness during a 24-hour
sleep deprivation period and throughout a subsequent night
following daytime recovery sleep. This presents a compelling
opportunity to deepen our understanding of the temporal
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dynamics of sleep pressure and vigilance regulation. Such
long-term recordings can capture natural fluctuations in
alertness due to circadian and homeostatic processes, as well
as individual susceptibility to sleep loss. This comprehen-
sive dataset could inform the development of more robust
and generalizable algorithms capable of detecting drowsiness
across a wide range of real-world scenarios and time frames.

Moreover, a 24-hour EEG assessment allows the identifi-
cation of individual variability in drowsiness expression and
recovery, potentially enabling personalized predictive models.
Such models could dynamically adapt to a user’s physiologi-
cal state, thereby enhancing the precision and timeliness of
drowsiness detection. This approach aligns with the grow-
ing emphasis on personalized medicine and human-centered
design in neurotechnology.

Developing algorithms trained on 24-hour EEG data may
also support the integration of drowsiness monitoring into
wearable or minimally invasive systems. By learning to
identify EEG markers that remain consistent across different
levels of activity, posture, and time of day, these algo-
rithms could eventually be embedded in real-time applica-
tions, providing continuous monitoring and early warnings to
mitigate fatigue-related risks.

Resting-State EEG Predictive Advantage

Unlike conventional automatic drowsiness detection systems
that identify spontaneous drowsiness or related performance
declines in real-time —often too late to prevent impair-
ments or accidents— our approach might predict drowsi-
ness-induced performance deterioration in advance, enabling
timely intervention with effective countermeasures to prevent
functional decline. The aim is to assess the cognitive
readiness and forecast the likelihood of either good or
impaired performance before the task.

Like certain algorithms, we will leverage machine learning
analyses while integrating interindividual characteristics, such
as age, sex, chronotype, and accumulated sleep depriva-
tion. This personalized approach aims to enhance predictive
accuracy.

By leveraging automatic sleep pressure quantification
through resting-state EEG data—adjusted for interindividual
characteristics— our study will provide valuable insights into
individuals’ vulnerability to drowsiness before critical lapses
in attention or vigilance occur. This predictive capability
enables proactive interventions, such as fatigue management
strategies, to prevent performance deterioration and reduce
the risk of accidents.

Implications for the World of Work and
Transport

The ability to forecast drowsiness-related impairments has
significant applications in occupational and transport settings
[5,62-64]. Workers in industries requiring night shifts, such
as in health care, emergency response, and manufacturing,
frequently experience sleep deprivation, which can lead
to decreased cognitive performance and increased accident
risks at work [5,65,66]. By integrating predictive drowsiness
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assessment tools, employers can enhance safety measures
through “fatigue” monitoring and targeted interventions to
prevent fatigue-related errors and accidents.

The transport sector, particularly aviation, rail, and road
transport, is highly vulnerable to drowsiness-related accidents
[67]. Microsleeps and lapses in vigilance can have cata-
strophic consequences, making early prediction of drows-
iness essential for safety. Unlike real-time systems that
detect spontaneous drowsiness only at the moment it occurs,
our approach will offer a preemptive strategy by identi-
fying individuals at risk of performance decline related
to drowsiness beforehand. In other words, our approach
systematically evaluates an operator’s cognitive readiness
and forecasts the probability of optimal or impaired perform-
ance due to sleepiness prior to the initiation of a driving
task, flight, or other transportation activity. Our EEG-based
drowsiness detection systems can facilitate the implementa-
tion of drowsiness-monitoring technologies in pilots, train
operators, and long-haul drivers, significantly reducing the
likelihood of sleep-related incidents occurring. Additionally,
our findings could inform regulatory policies mandating
proactive drowsiness risk management in safety-sensitive
professions.

Continuous real-time drowsiness assessment is essential,
especially for validating Driver Drowsiness Warning systems
in advanced driver-assistance systems. To detect spontaneous
drowsiness during driving or work scenarios, we will develop
an automated algorithm that analyzes 2 EEG channels in
accordance with OSS scoring.

Clinical Health Applications

Identifying or predicting drowsiness during behavioral or
cognitive tasks will primarily be used to assess the effects
of medication or other interventions in conditions related
to sleepiness or in patients experiencing excessive daytime
sleepiness.

Beyond occupational and transport safety, the study’s
findings have important implications for clinical health. Sleep
disorders, such as insomnia, sleep apnea, and narcolepsy,
compromise an individual’s ability to maintain wakefulness
and cognitive function. By leveraging EEG-based biomark-
ers to measure manifest sleepiness or predict drowsiness
susceptibility, clinicians could improve diagnostic accuracy
and develop more personalized treatment plans. In fact, the
MWT is the reference test for measuring manifest sleepiness
(ability to maintain wakefulness under monotonous condi-
tions) in sleepy patients and to determine the efficacy of
treatment for sleepiness. In some countries, the MWT has
a medico-legal value and is used to determine whether an
individual with sleep-related driving risk is fit or unfit to
drive after the implementation of therapeutic measures. In
this case, the MWT must be repeated annually for heavy
vehicle licenses and every 3 years for light vehicle licen-
ses. The MWT is conducted in specialized sleep centers
and requires appropriate equipment and trained personnel
for accurate execution and interpretation. However, access to
these centers may be limited due to a shortage of specialists
and restricted availability of necessary equipment. Automatic
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analysis of sleep latency using OSS criteria during the MWT
can facilitate the clinical management of sleepy patients
and could add, as microsleep episode, potential additional
value in the context of sleepiness assessment [68]. In this
sense, the freely available VIGALL (Vigilance Assessment
through Graphical Analysis of Linear and Localized) signals
algorithm has already demonstrated its ability to provide
comparable information on wakefulness regulation as the
more resource-intensive and time-consuming Multiple Sleep
Latency Test [60]. However, the VIGALL requires 25 EEG
derivations, which may still limit its practicality in routine
clinical use compared to the MEEGAWAKE single-EEG
algorithm. Moreover, automatic analysis of resting-state EEG
is simpler, more cost-effective, and easier to administer,
making it a potentially valuable alternative to the MWT
for the initial assessment of drowsiness in clinical settings.
Automatic analysis of resting-state EEG would be a simpler,
more cost-effective, and easier to administer assessment,
making it a potentially valuable alternative to the MWT for
the initial assessment of drowsiness in clinical settings.

Additionally, older individuals, patients recovering from
neurological conditions, such as traumatic brain injuries
[69] or neurodegenerative diseases [70,71], often experience
disrupted sleep-wake cycles and daytime sleepiness. An
easy-to-administer and precise assessment of their ability to
stay awake and maintain attention could enhance rehabili-
tation strategies, thereby improving cognitive recovery and
overall well-being.

Strengths and Weaknesses

One of the strengths of this study is its rigorous methodology,
aimed at validating a drowsiness detection system through
a strictly controlled sleep deprivation protocol, simulating
realistic conditions of repeated night work or on-call shifts.
The assessment of drowsiness throughout the sleep depriva-
tion periods, both during the day and at night, provides
a detailed understanding of its fluctuations according to
circadian rhythms and the accumulation of sleep pressure.
The analysis of behavioral and cognitive consequences is
particularly thorough, combining subjective and objective
measures through simulated driving tests, simple and complex
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cognitive tasks, and a scientifically recognized test for
evaluating the ability to stay awake. Additionally, the sample
is balanced in terms of gender and covers a wide age range
(20-60 years), enhancing the generalizability of the results to
a healthy adult population.

However, this study also has some limitations. Although
the laboratory setting minimizes environmental biases and
ensures strict standardization of experimental conditions, it
does not fully replicate the constraints and dynamics of
real-world settings, particularly in professional environments.
Furthermore, the relatively small sample size (N=40) limits
the statistical power of the conclusions. Another notable
limitation is the exclusion of patients diagnosed with sleep
disorders or excessive drowsiness, restricting the applicability
of the findings to healthy individuals only. As a result, it
is not possible to confirm that the tested system would be
equally effective in a clinical population. These limitations
should be considered before broader implementation of this
technology.

Conclusion

This study is expected to contribute to a deeper under-
standing of the determinants of drowsiness and advance
the development of proactive strategies for its monitoring
and management across occupational, transport, and clinical
contexts. Rather than relying solely on real-time drowsi-
ness detection systems, this work examines how OSS-based
criteria may capture spontaneous drowsiness and associated
behavioral changes, and how resting-state EEG parameters
may predict cognitive readiness and mid-term vulnerability to
performance decline. The project aims to identify objective
neuromarkers that could support earlier and more effec-
tive detection of drowsiness and sleep-related risks. Future
work will involve validating these potential neuromarkers
across diverse healthy and patient populations and evaluat-
ing how they may be integrated into fatigue-risk manage-
ment tools and clinical assessment frameworks. Together,
these efforts aim to support the broader implementation
of predictive drowsiness-assessment methods for improving
safety, optimizing clinical care, and reducing sleep-related
accident risk.
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