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Abstract

Background: Mild cognitiveimpairment and early dementia(MCI-ED) are frequently unrecognized in routine care, particularly
in home health care (HHC), where clinical decisions are made under time constraints and cognitive status may be incompletely
documented. Federally mandated HHC assessments, such as the Outcome and Assessment Information Set (OASIS), capture
health and functional status but may miss subtle early cognitive changes. Speech, language, and interactional patterns during
routine patient-nurse communication, together with information embedded in unstructured clinical notes, may provide
complementary signals for earlier identification.

Objective: Thisprotocol describes the development and eval uation of amultimodal screening approach for identifying MCI-ED
in HHC by integrating (1) speech and interaction features from routine patient-nurse encounters (verbal communication), (2)
large language model—based extraction of MCI-ED—related information from HHC notes and encounter transcripts, and (3)
structured variables from OASIS.

Methods: This ongoing cross-sectional case-control study is being conducted in collaboration with VNS Health (formerly
Visiting Nurse Service of New York). Eligible participants are adults aged =60 years receiving HHC services. Case/control
assignment uses a 2-stage process. electronic health record (EHR) prescreening followed by clinician-reviewed cognitive assessment
(Montreal Cognitive Assessment and Clinical Dementia Rating) for consented participants without an existing mild cognitive
impairment diagnosis. For Aim 1, each participant contributes 3 audio-recorded routine patient-nurse encounters linked to EHR
data, including OASIS and free-text clinical notes. Aim 1 extracts acoustic, linguistic, emotional, and interactional features from
patient-nurse verbal communication. Aim 2 uses a schema-guided large language model pipeline to extract and normalize
MCI-ED-related symptoms, lifestylerisk factors, and communication deficits from HHC notes and encounter transcripts, supported
by a human-annotated gold-standard dataset. Aim 3 integrates speech, extracted text variables, and OASIS predictors using
supervised machine learning with stratified nested cross-validation; evaluation will include discrimination, calibration, and
subgroup performance checks across race, sex, and age.

Results: Between February 2024 and July 2025, atotal of 114 HHC patients compl eted study-admini stered cognitive assessments
and were classified as 55 MCI-ED cases and 59 cognitively normal controls. Audio-recorded patient-nurse encounters had a
median duration of 19 (IQR 12-23) minutes and a median of 56 (IQR 31-80) utterances per encounter; nurses contributed more
words than patients (median 842, IQR 461-1218 vs median 589, |QR 303-960). In exploratory feasibility analyses, multimodal
models integrating speech, interactional features, and structured EHR/OASI S variables outperformed single-source models.
Conclusions: This protocol describes a reproducible multimodal framework for MCI-ED screening in HHC using routinely
generated data streams. I nitial implementation results support feasibility of data collection and end-to-end processing and suggest
potential value of integrating interactional speech featureswith clinical text and OASIS variables. Final model eval uation, subgroup
analyses, and validation will follow the prespecified analytic procedures on the finalized study dataset.
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Introduction

Alzheimer disease and Alzheimer disease—related dementias
are among the most pressing global public health challenges.
In 2021, an estimated 57 million people were living with
dementia worldwide, with over 60% residing in low- and
middle-income countries and nearly 10 million new cases
occurring each year [1]. Dementiais associated with substantial
disability, caregiver burden, and rapidly rising health-system
costs [2]. In the United States, an estimated 7.2 million adults
aged =60 years were living with Alzheimer dementiain 2025,
underscoring the scale of need in high-income settings as well
[3]. Alongside treatment advances and growing interest in risk
reduction, global guidance continues to emphasize the
importance of timely detection and prevention-oriented
interventions across diverse popul ations and care contexts[4,5].

Despite thisurgency, alarge proportion of cognitiveimpairment,
particularly mild cognitive impairment (MCI) and early-stage
dementia, remains unrecognized or undocumented in routine
care, contributing to delayed diagnosis and missed opportunities
to tailor care planning [6,7]. In home-based care settings,
documentation gaps can be especially consequential because
care teams must make clinical decisions in the context of
multimorbidity, limited visit time, and incomplete prior
cognitive history [8,9]. Recent evidence from skilled home
health care (HHC) shows that dementia is frequently
undocumented in home health records, illustrating how care
transitions and documentation practices can impede recognition
of cognitive impairment [10]. These realities motivate scalable
screening approachesthat can operate within routine workflows,
rather than relying solely on specialist evaluation or
resource-intensive testing.

Speech and language have emerged as promising noninvasive,
low-burden digital biomarkersfor cognitiveimpairment [11-14].
A recent systematic review and meta-analysis focused on MCl
specifically concluded that speech-based biomarkers show
meaningful diagnostic use, while also highlighting
methodological heterogeneity and the need for validation in
diverse settings and populations [15]. At the same time, much
of the speech-based Alzheimer disease and Alzheimer
disease-related dementias detection literature remains anchored
in structured elicitation tasks [16] (eg, cookie-theft picture
description) and benchmark corpora (eg, DementiaBank-derived
shared tasks such as ADReSSo [17]), which enable
comparability but may not capture interactional and pragmatic
markers expressed during everyday clinical communication
[15,18]. Multilingual and cross-cultural work further indicates
that generalization across languages and contexts cannot be
assumed; for example, multilingual spontaneous speech studies
(eg, Italian and Spanish) demonstrate feasibility outside
English-centric benchmarks but aso reinforce the importance
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of ecologicaly valid sampling and external validation
[13,19-21].

These limitations are particularly relevant for MCI and early
dementia, whereimpairments can be subtle, context-dependent,
and potentially expressed through conversational dynamics (eg,
timing, turn-taking balance, and discourse coherence) rather
than only through content produced during structured tasks[16].
This motivates studying routine patient-clinician conversations,
where interactional features may provide an additional signal
for early-stage cognitive change in real-world contexts [22].

A complementary and underused source of early cognitive
signalsis unstructured clinical documentation, including HHC
nursing notes [10,23]. Recent reviews show that natural
language processing (NLP) approaches applied to electronic
health record (EHR) notes can identify cognitive impairment
with strong median performance across studies, but variability
in diagnostic criteria, data sources, and external validation
remains a key barrier to trandation [24]. In pardlel, large
language model (LLM) methods are increasingly being
evaluated for detecting cognitive decline from clinical notes,
including large clinical language model approaches (eg,
CD-Tron) and comparative studies of LLMs in real-world
clinical text [25-29]. These developments suggest that
LLM-enabled extraction can help capture both explicit and
implicit mentions of symptoms, risk factors, and functional
concernsthat areinconsistently represented in structured fields,
an especially relevant issue in home-based care workflows.

HHC is therefore a compelling setting for scalable,
equity-oriented screening because it provides repeated
encounters and routinely generates multiple complementary
datastreams, including standardized assessments (eg, Outcome
and Assessment Information Set [OASIS in US
Medicare—certified home health agencies), narrative nursing
notes, and patient-nurse verbal communication. Our prior work
in HHC has shown that combining structured assessment data
with information extracted from clinical notes canimproverisk
identification (HomeADScreen [12]). More recently, we
demonstrated the potential value of leveraging audio-recorded
patient-nurse verbal communication as an additional signal
beyond EHR data for early cognitive screening in HHC [16].
However, few studies have jointly leveraged (1) standardized
home-care assessments, (2) unstructured home-care clinical
notes, and (3) routine patient-clinician conversations within a
single integrated screening framework for mild cognitive
impairment and early dementia (M CI-ED) in home-based care.

Accordingly, this study describes an ongoing protocol to develop
and evaluate a multimodal screening approach for identifying
MCI and early dementiain HHC using routinely generated data
streams: standardized assessment data (OASIS), HHC nursing
notes, and audio-recorded patient-nurse verbal communication.
Weaimto (1) model speech, language, emotion, and interaction
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patterns from patient-nurse conversations using automated
speech analysis, (2) apply NLP/LLM methods to identify
MCl/early dementia—related symptoms, lifestyle risk factors,
and communi cation deficits from both clinical notes and verbal
communication, and (3) integrate these signal swith standardized
assessment variables to improve screening performance
compared with models based on any single data stream.

Methods

Study Setting, Design, and Status

This protocol describes an ongoing cross-sectional case-control
protocol in collaboration with VNS Health (formerly Visiting
Nurse Service of New York), one of the largest HHC systems
inthe United States. The study population includes adults aged
60 yearsand older who receive HHC servicesfrom VNS Health.
The protocol is designed to develop and evaluate a multimodal
screening agorithm for identifying MCI-ED in HHC.

Participant Recruitment, Eligibility, and Group
Allocation

Recruitment Focus and Rationale

Aim 1 focuses on modeling speech, language, emotional
expression, and interaction patterns during routine patient-nurse
encounters (verbal communi cation) as markers of early cognitive
decline in HHC. The primary analytic cohort includes
non-Hispanic Black and non-Hispanic White patientsreceiving
HHC services from VNS Health. These groups were selected
because they are highly represented in the study setting, enable
adequately powered comparisonswithin asingle HHC system,
and facilitate evaluation of model performance across racial
groups—particularly  important given  well-documented
disparitiesin dementia diagnosis and care for Black patients.

Recruitment Strategy

Potential participants are identified through EHR-based
screening and clinician referral workflowswithin VNS Health.
Prespecified EHR indicators are used to identify likely cases
(eg, documented symptoms of cognitive decline) and likely
controls (no evidence of impairment). Eligible patients are
approached during an active episode of HHC. Recruitment is
monitored to achieve representation of both racial groups and,
when feasible, balance across key characteristics, age, sex asa
biological variable, and education.

Eligibility, Screening Workflow, and Group Allocation

Eligible participants are aged =60 years, plan to receive VNS
Health services during the study period, have sufficient English
proficiency to communicate independently with HHC nurses,
have adequate vision/hearing to compl ete cognitive testing, and
can provide written informed consent. Patients are excluded if
they (1) are unable to communicate independently with the
HHC nursein English and (2) have speech or language disorders
due to neurological conditions other than MCI-ED (eg,
Parkinson disease or seizure disorders). Full eligibility criteria
are provided in Multimedia Appendix 1.

We use a 2-stage approach to identify patients for case and
control groups. First, weidentify potential casesusing available
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ICD-10 (International Statistical Classification of Diseases,
Tenth Revision) diagnosesinthe EHR (ICD-10 G31.84 for MCI)
and identify potential controls as patients without documented
cognitive impairment. Second, all consented participantswithout
an existing M Cl diagnosis complete cognitive assessments—the
Montreal Cognitive Assessment (MoCA) [30,31] and Clinical
Dementia Rating (CDR) [31]—in their homes, administered by
a trained research assistant who audio-records responses to
support final group assignment.

A study clinician with expertise in cognitive impairment
detection reviews the recorded cognitive assessments together
with relevant clinical context (medical history and nurse
assessment information from OASIS) to confirm group
assignment. Based on prespecified criteria, participants are
classified as MCI-ED cases when findings are consistent with
early cognitive impairment (anticipated CDR 0.5-1 and MoCA
~16-25, with consideration of EHR evidence when available)
and as cognitively normal controls when findings are within
normal limits (CDR 0 and MoCA >26), and there is no EHR
evidence of cognitive impairment. Participants meeting criteria
for moderate to severeimpairment (eg, CDR 2-3 or MoCA <16)
are excluded because the protocol focuses on MCI-ED.

After group allocation, patients in both the case and control
groups are invited to provide additional consent for the next
phase of Aim 1, which includes audio-recording routine
patient-nurse encounters.

Ethical Consider ations

This study was reviewed and approved as human participant
research by the Columbia University Irving Medical Center
Institutional Review Board (Protocol AAAU3168). The study
is conducted in collaboration with VNS Health and complies
with al applicable ingtitutional, federal, and regulatory
requirements for research involving human participants.

Written informed consent is obtained from all participating
patients prior to enrollment. Consent includes permission for
the administration of cognitive assessments, including the
MoCA and the CDR, audio-recording of patient-nurse
encounters, and linkage of audio recordings and assessment
datawith EHR information. HHC nursesalso provideinformed
consent for participation, including consent for audio-recording
of patient-nurse encounters. Participants are informed of the
study purpose, procedures, potentia risks, and their right to
withdraw at any time without affecting their care or
employment.

All study dataare handled in accordance with Health Insurance
Portability and Accountability Act and ingtitutional data
protection policies. Audio recordings, transcripts, cognitive
assessment data, and clinical text are deidentified prior to
analysis, with direct identifiers removed. Data are stored on
secure, access-controlled servers at Columbia University and
VNS Health with role-based permissions and audit logging.
Access to identifiable data is restricted to authorized study
personnel only. Deidentified datasets are used for analysis, and
results are reported in aggregate to minimize the risk of
participant reidentification.
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Each participating patient receives a US $50 incentive for
completion of cognitive assessments (MoCA and CDR) and an
additional US $50incentivefor participation in audio-recording
of patient-nurse encounters. HHC nurses also receive aUS $50
incentive for participation in audio-recording of patient-nurse
encounters. Incentives are provided in accordance with
institutional review board—-approved procedures and are not
contingent on study outcomes.

Data Collection Overview

Number of Audio-Recorded Encounters (Patient-Nurse
Conversation)

For each enrolled participant, 3 routine pati ent-nurse encounters
are audio-recorded during the HHC episode of care. Recording
multiple encounters provides repeated observations to capture
within-person variability in speech, language, and interactional
patterns across visits, while minimizing participant and clinician
burden. When both patient and nurse provide consent, atrained
research assistant attends the visit and operates a Saramonic
Blink audio-recording device [32], minimizing burden on
clinica staff. This portable device, with dua wireless
microphones that attach to clothing, provides clear speech
transmission to devices like an iPod and offers dual-channel
storage.

Linking Audio-Recorded Encountersto EHR Data and
Clinical Notes

Audio-recorded encounters are linked to EHR data extracted
from the VNS Health system, including the OASIS [33,34]—a
federally mandated HHC assessment capturing patient health
status, functional status, and living arrangements—as well as
supplemental structured data (eg, medications) and free-text
clinical notes. Free-text notes include visit notes, documenting
each nurse encounter, and care coordination notes, capturing
communications with other clinicians, physicians, and family
members.

Preliminary Feasibility and Pilot Studies

Prior to this protocol, we conducted a series of pilot studies to
establish the feasibility of audio-recording patient-nurse verbal
communication and applying automated speech and machine

https://www.researchprotocol s.org/2026/1/e82731

Zolnoori

learning methods in the HHC setting [22]. First, we evaluated
several commercially available audio-recording devices in
laboratory and real-world HHC settings, assessing usability,
transcription quality, and acceptability among HHC nurses and
patients. Based on System Usability Scale scores and
transcription accuracy measured by word error rate, the
Saramonic Blink device [35] demonstrated the best overall
performance and was selected for use in the current study.
Semistructured interviewswith HHC nurses and patients further
indicated that audio-recording was acceptable and had minimal
perceived impact on routine care delivery.

In a second pilot study, we demonstrated the feasibility of
automated speaker type identification in recorded HHC
encounters using machine learning models trained on acoustic
and lexical features, achieving satisfactory classification
performance [36]. In a third pilot study, we developed and
validated an end-to-end analytic pipeline for modeling spoken
language in cognitive impairment [11] (Figure 1). The pipeline
included (1) audio preprocessing for noise reduction; (2)
automated speaker type identification to separate patient and
clinician speech; (3) extraction of acoustic features capturing
phonetic motor planning and voice characteristics (eg, fluency,
frequency/spectral measures, intensity, and instability) using
OpenSMILE [37] and PRAAT [38]; (4) modeling of emotional
expression using the Geneva Minimalistic Acoustic Parameter
Set [39] (GeMAPS) complemented by lexicon-based
psycholinguistic markers [40] (using Linguistic Inquiry and
Word Count [LIWC]); (5) modeling of language organization
using transcript-derived lexical and syntactic measures—using
Natural Language Toolkit (NLTK) [41]—and contextua
language representations (using distilled RoBERTa [42]); and
(6) machine learning—based classification with internal
validation. We evaluated this pipeline on a benchmark dataset
(DementiaBank [43] “ Cookie Theft” picture descriptions) and
observed strong discrimination between cognitively impaired
and cognitively unimpaired participants, supporting the
feasibility of extracting informative speech-derived markers
and training predictive models. Collectively, these pilot studies
informed the design decisions, data collection procedures, and
analytic pipelinesin this protocol.
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Figure 1. Analytic pipeline for modeling spoken language. ADRD: Alzheimer disease and related dementias; LIWC: Linguistic Inquiry and Word
Count; NLTK: Natural Language Toolkit.
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Analytic Method for Aim 1: Model M CI-ED Patients

Verbal Communications With Clinicians Using an
Automated Speech Analysis System

Rationale and Overview

Early cognitive decline affects multiple aspects of spoken
communication, including speech motor control, language
organization, emotional expression, and socia interaction. In
HHC settings, these changes are expressed during spontaneous
patient-nurse verbal communications rather than structured
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preliminary feasibility and pilot work, Aim 1 focuses on
systematically modeling these communication patterns using
an automated speech analysis system. The objectiveisto extract
complementary acoustic, linguistic, emotional, and interactional
features from naturally occurring patient-nurse communications
that may signal MCI-ED. The analytic framework for Aim 1
consists of 5 components, summarized in Table 1, which
together capture core dimensions of speech production and
interaction relevant to cognitive decline.
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Table 1. Modeling mild cognitive impairment and early dementia (MCI-ED) patient-nurse verbal communication in the home health care setting
(components 1-4).

Component and domain

Measures

Component 1: modeling phonetic motor planning

Speech (vocal) fluency

Rhythmic structure of speech

Frequency and spectral domain

Voiceinstability

Voice quality

Voiceintensity

Articulation: number of phonemes per second without hesitation [44].

Speech rate: number of phonemes per second with hesitation [44].

Silent pauses: number of speechlessintervals at the beginning of and between words [45].
Within-word disfluency: within-word silent pauses and sound prolongations [46].

Syllabic intervals: temporal variability in speech [47].

Pairwise variability index: durational variability in successive acoustic-phonetic intervals [48].

Vowel duration: proportion of time of vocalic intervals in a sentence and the standard deviation of inter-
vowel intervals [49].

Fundamental frequency: average number of oscillations originating from the vocal folds per second [50].
Formant frequencies (F1-F4): acoustic resonances of the vocal tract dueto changesin the positions of vocal
organs[51].

Spectral center of gravity: amplitude-weighted mean of harmonic peaks averaged over sound duration [52].
L ong-term average spectrum: composite signal representing the spectrum of the glottal source and resonant
characteristics of the vocal tract [53].

Mel-frequency cepstral coefficients. energy variations between frequency bands of a speech signal [54].

Jitter: cycle-to-cycle period variation of successive glottal cycles[55].
Shimmer: cycle-to-cycle amplitude variation of successive glottal cycles[55].
Cepstral peak prominence: measure of periodicity in the speech signal [56].

Harmonics-to-noise ratio: relative amount of additive noise in the voice signal [50].

Voice breaks: reduced ability in vocal cord execution resulting in voice breaks [57].

Acoustic voice quality index: weighted combination of time-frequency and quefrency-domain metrics de-
veloped to measure the severity of dysphonia[58].

Hammarberg index: articulatory effort computed as the difference between maximum energy in the 0-2
kHz band and the energy in the 2-5 kHz band [59].
Energy concentration: average spectral frequency [45].

Component 2: modeling the patient’s emotional expression

Freguency parameters

Energy/amplitude

Spectral parameters

Pitch: number of vibrations per second produced by the vocal cords [60].

Jitter [55].

Center frequency of formants 1-3.

Bandwidth of formants 1-3. Formant frequencies are acoustic resonances of the vocal tract caused by
changesin vocal organ positions [51].

Shimmer.
Loudness: estimate of perceived signal intensity from an auditory spectrum [61].
Harmonics-to-noise ratio: relative amount of additive noisein the voice signal [50].

Alpharatio: ratio of summed energy from 50-1000 Hz and 1-5 kHz.

Hammarberg index: measure of articulatory effort [59].

Spectral slope (0-500 Hz and 500-1500 Hz).

Formant 1-3 relative energy.

Harmonic difference H1-H2: difference between first and second harmonic amplitudes [62].

Harmonic difference H1-A3: difference between H1 and A3 (energy of the highest harmonic in the third
formant range) [62].

Spectral flux: difference between the spectra of 2 consecutive frames.

Mel-frequency cepstral coefficients. see frequency and spectral domain in component 1.

Component 3: modeling syntactic, semantic, and pragmatic levels of language organization

Lexical richness

Moving average type-token ratio: total number of unique words divided by the total number of words for
each successive fixed-length window [63].

Brunet index: variation in word types marked by part-of-speech tagging relative to the total number of
words in a sentence [64].

Honore index: proportion of words used only once relative to the total number of words [65].
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Component and domain Measures

Syntactic level of language or-  «
ganization .

Sentence complexity: score computed using a syntactic parse tree [66].
Grammatical errors: identified using a parse tree analyzer [67].

« Incomplete (fragment) sentences: identified using an automatic detection algorithm based on syntactic
parse trees and part-of-speech tagging [68].

Semantic fluency .

Patient recall ability .
[73].

Identification of filled pauses (eg, “um™) in the patient’s spoken language [69-72].

Uncertainty in patient language: computed using the linguistic approximator introduced by Ferson et al

« Memory-related terms: proportion of sentences containing memory-related terms relative to the total
number of sentences, computed using the NimbleMiner toolkit [74,75].
«  Question ratio: proportion of interrogative sentences relative to the total number of sentences, identified

using the NLTK? Python package [74].

Component 4: modeling patient-nur se inter action

Patient turns .

Continuous block of uninterrupted speech by a single patient.

«  Total number of patient turns indicates frequency of information exchange [76].

Interactivity .
[76].
Turn density .
Turn duration .
in MCI-ED [76].
Relative timing of turns .

to total utterances[77].

Dialog interactivity: defined asthe total number of patient turns divided by thetotal length of the encounter

Computed using the same parameters specified for lexical richness (component 3).

Length of time of the patient’sturn; longer durations have been associated with difficulty in turn monitoring

Discernible pause rate: proportion of discernible speechlessintervals at the start of patient turnsrelative

«  Cross-over speaking rate: proportion of patient-nurse utterances with cross-over speaking relative to total
utterances during the interaction [ 77].

3NLTK: Natural Language Toolkit.

Feature Specification and Reproducibility

For reproducibility, al speech- and interaction-based parameters
extractedin Aim 1 areexplicitly specifiedin Table 1, organized
by analytic component (phonetic motor planning, emotional
expression, syntactic and semantic language organization, and
patient-nurse interaction). Table 1 provides the operational
definition and measurement domain for each parameter.
Acoustic features are computed using established toolkits
(OpenSMILE [78] and PRAAT [38]); linguistic features are
derived from automatically transcribed speech using NLTK,
LIWC [79], and distilled ROBERTag; and interactional features
are computed from speaker-labeled timestamps generated by
Amazon Web Services (AWS) Transcribe.

Component 1: Modeling Phonetic Motor Planning

Impairment in phonetic motor planning is a well-documented
consequence of neurodegenerative disorders, including MCI-ED,
and manifests as reduced articulation precision, atered speech
rhythm [44,80,81], and increased disfluency. To characterize
these changes, we analyze acoustic parameters across six
domains (Table 1, component 1): (1) speech fluency [45,46,82],
(2) rhythmic structure [48,49,83], (3) frequency and spectral
characteristics [45,84,85], (4) voice instability [45,69,86], (5)
voice quality [87-89], and (6) voice intensity [45,90]. These
measures quantify temporal and spectral aspects of speech that
reflect the patient’s ability to plan and execute vocal motor
actions.

https://www.researchprotocol s.org/2026/1/e82731

Component 2: Modeling Emational Expression

Alterations in emotional expression often develop alongside
cognitive decline and can negatively affect communication
quality and interpersonal interaction [91,92]. Emotion is
conveyed both through nonverbal vocalization and semantic
content [93-96]. To model vocal expression of emotion, we use
the GeMAPS [39], which captures affect-related changes in
autonomic arousal and vocal musculature via frequency-,
energy-, and spectral-domain parameters (Table 1, component
2). To capture the semantic expression of emotion, we extract
linguistically encoded emotional indicators using the LIWC
dictionary. Emotion-related linguistic markers (eg, sadnessand
anxiety) have been associated with cognitive dysfunction [97]
and adverse health outcomes [98].

Component 3: Modeling Syntactic, Semantic, and
Pragmatic Language Organization

Language impairment in MCI-ED is characterized by reduced
lexical diversity, simplified syntax [44,97,99], word-finding
difficulties [44,100], and impaired memory-related discourse
[44,101], which together contribute to reduced coherence. We
model language organization using features in four domains
(Table 1, component 3): (1) lexical richness [64,65,102], (2)
syntactic complexity and grammaticality [66,103], (3) semantic
fluency [104], and (4) patient recall ability [73,74]. Linguistic
features are derived from automatically transcribed speech and
processed using standard NLP tools. In addition, we will use
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digtiled RoBERTa [42] to generate contextual language
representations that capture semantic relationships beyond
surface-level lexical features.

Component 4: Modeling Patient-Nurse I nteraction

Cognitive impairment also affects social communication,
including turn-taking, timing, and responsiveness [105,106].
Patientswith MCI-ED may show recurrent interactional patterns,
such aslonger turns, delayed responses, or reduced interactivity
[107]. To capture these phenomena, we will model patient-nurse
interaction using easily measurable dial ogue features|[76,77,108]
(Table 1, component 4), including patient turn counts, dialog
interactivity, turn density, turn duration, and relative timing of
turns. Theseinteractional measuresreflect how patients engage
with clinicians in real-world care encounters and provide
information beyond speech content alone.

Component 5: System | mplementation and Feature
Extraction

Acoustic parameters for components 1 and 2 will be computed
at the utterancelevel (continuous blocks of uninterrupted patient
speech) using OpenSMILE [37] and PRAAT toolkits [38].
Verbal communications are automatically transcribed using
AWS Transcribe, after which linguistic features for component
3 are computed at the encounter level using the NLTK toolkit
and distilled RoBERTa. Interactional features for component
4 are derived from AWS Transcribe metadata, including speaker
labelsand time stamps. All extracted featureswill be aggregated
at the patient level for downstream integration with clinical data
in Aim 3.

Analytic Method for Aim 2: Extraction of
M CI-ED-Related Information From Clinical Text
UsingLLMs

Rationale and Overview

Many clinical indicators of MCI-ED—including symptoms,
lifestyle risk factors, and communication difficulties—are
documented in free-text clinical notes or expressed during
patient-nurse conversations [109], but are not captured in
structured EHR fields [6,110]. Aim 2 uses LLMs to
systematically extract thisinformation from HHC clinical notes
and transcripts of patient-nurse verbal communication. Thegoal
is to convert unstructured text into standardized, patient-level
variables that can be integrated with speech features (Aim 1)
and structured assessment data (OASIS) for multimodal
screening (Aim 3).

Information Specification and Reproducibility

For reproducibility, all MCI-ED—related information identified
in Aim 2 is defined using an information schema summarized
in component 1 (Information targets and schema). The schema
specifies the target information families (clinical symptoms,
lifestylerisk factors, and communication deficits) and associated
attributes, and is applied consistently across human annotation
and LLM-based identification. MCI-ED—related informationis
normalized to standard clinical terminol ogies—Unified Medical
Language System (UMLS) [111] concepts, when available—and
represented in a structured patient-level format, supporting
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reproducible integration with Aim 1 features and OASIS
variables.

Component 1: Information Targets and Schema

We define a schema for the 3 MCI-ED—related risk factor
categories, including clinical symptoms, lifestyle risk factors,
and communication deficits. For each identified item, the system
records (1) the related terms; (2) a normalized clinical concept
identifier when available (UMLS[111] concepts); (3) clinically
relevant  attributes:  assertion  (present/absent/possible),
temporality (current/historical), and experiencer
(patient/caregiver); (4) severity and frequency; and (5) duration.
The schema is used consistently across clinical notes and
transcripts of patient-nurse communication.

Component 2: Human-Annotated Gold-Standard Dataset

Using the information schema defined in component 1, we
create ahuman-annotated gold-standard dataset to support LLM
adaptation and evaluation. The schema specifies the target
information categories (clinical symptoms, lifestylerisk factors,
and communication deficits) and associated attributes, including
assertion, temporality, and experiencer.

Two trained nurse annotatorsindependently annotate a stratified
sample of HHC clinical notes and encounter transcripts
according to this predefined schema. The annotation sampleis
stratified by race, sex, and visit type to ensure representation of
diverse documentation patterns. Interannotator agreement is
assessed using Cohen k [112] for each information category
and attribute, calculated on double-annotated samples prior to
adjudication. Discrepancies are resolved through adjudication
meetings to produce a finalized gold-standard dataset. The
annotated corpus is subsequently partitioned into training,
development, and test sets to enable LLM fine-tuning and
unbiased performance evaluation.

Component 3: LLM-Based | dentification Strategy

We use a hybrid LLM-based strategy that combines prompted
extraction and instruction tuning [113], both aigned with the
information schema (component 1) and supervised by the
human-annotated gold-standard dataset (component 2). First,
prompted extraction (baseline): asabaseline approach, we apply
structured prompts that explicitly define the 3 information
families (clinica symptoms, lifestyle risk factors, and
communication deficits) and required attributes (assertion,
temporality, and experiencer). Prompts instruct the model to
produce schema-compliant JSON outputs and to provide a
supporting text span for each identified item to ensure
evidence-grounded extraction. This prompted approach provides
aninterpretable, rapidly adjustable method for early experiments
and error analysis. Second, instruction tuning (schema-guided
supervised adaptation): to improve reliability on HHC-specific
language and documentation patterns, we perform instruction
tuning using the training split of the human-annotated
gold-standard dataset. Training examples pair the input text
(note or transcript segment) with the target output formatted as
schema-compliant JSON, including the identified item type,
attributes (assertion, temporality, and experiencer), and
supporting span. Thisteachesthe model to follow the extraction
instructions consistently and to produce outputs that match the
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schema across diverse note styles and conversational phrasing.
Instruction tuning is implemented using parameter-efficient
methods (eg, Low-Rank Adaptation [114]/ Quantized Low-Rank
Adaptation [114,115]) to reduce computational burden in the
secure environment.

Component 4: Normalization and Patient-Level
Aggregation

For each identified item in the text, we normalize the item
(mention) to a standardized clinical concept identifier (UMLS,
when available) using a controlled vocabulary lookup
supplemented by string similarity matching for common
variants. When multiple items map to the same concept within
a document, we merge them into a single record while
preserving the schema attributes (assertion, temporality,
experiencer, and—when present—severity and
frequency/duration) and retaining the supporting text spans for
traceability. We then aggregate document-level outputs to the
patient level to produce predictors for Aim 3. Patient-level
variables summarize the presence of each normalized concept
and its attributes across the patient’s available HHC notes and
encounter transcripts. The final deliverable is a structured
patient-level table of normalized MCI-ED-related symptoms,
lifestylerisk factors, and communication deficitsfor integration
with OASIS data and Aim 1 speech and interaction features.

Component 5: Evaluation, Subgroup Checks, and
Quality Control

We evaluate performance against the human-annotated
gold-standard dataset using (1) span-level precision/recall/F;
under exact and overlap matching, (2) attribute performance
(assertion, temporality, experiencer, and severity/frequency
when applicable), and (3) concept normalization accuracy. We
report results overall and stratified by race, sex, and age group
to monitor for systematic performance differences. We conduct
routine error anaysis (eg, common false positives from
templated note language, negation errors, or transcript artifacts)
and use findings to refine prompts, update normalization
resources, and adjust fine-tuning settings. Low-confidence
outputs are flagged for targeted review during development to
guide iteration and reduce systematic errors.

Component 6: Aim 2 Outputs Used in Aim 3

Thefinal Aim 2 deliverableisastructured, patient-level dataset
summarizing clinical symptoms, lifestyle risk factors, and
communication deficits identified from HHC notes and
transcripts, including normalized concept identifiers and
clinically meaningful attributes. These variables are used as
candidate predictors and complementary signals in the
multimodal screening algorithm developed in Aim 3.

Analytic Method for Aim 3: Development of a
Multimodal Screening Algorithm for Identifying
MCI-ED in HHC

Objective and Overview

The objective of Aim 3isto develop and evaluate amultimodal
screening algorithm for identifying HHC patientswith MCI-ED.
Theagorithm integrates complementary information from three
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routinely generated data sources: (1) speech and interaction
features extracted from patient-nurse communication (Aim 1),
(2) MCI-ED—related information identified from clinical notes
and transcripts (Aim 2), and (3) structured assessment datafrom
the OASIS.

Data Sources and Candidate Predictors

Input variables include (1) acoustic, linguistic, emotional, and
interactional features derived from patient-nurse verbal
communication (Aim 1); (2) normalized clinica symptoms,
lifestylerisk factors, and communication deficitsidentified from
clinica notes and encounter transcripts (Aim 2); and (3)
structured OASIS variables capturing sociodemographic
characteristics, diagnoses, medications, functiona status, and
related clinical information.

Component 1: Data Preprocessing and Feature
Preparation

Prior to model devel opment, we assess data quality and address
missingness, inconsistency, and integrity issues using a
predefined data quality framework [116]. Continuous variables
are transformed and scaled as appropriate to ensure
comparability across modalities. To reduce dimensionality and
mitigate overfitting in the presence of a large number of
candidate predictors, we apply Joint Mutual Information
Maximization [117] as afeature selection method. Joint Mutual
Information Maximization is selected for its suitability in small
to moderate sample settings with high-dimensional data, where
it balances relevance to the outcome with redundancy among
features.

Component 2: Model Development and Multimodal
I ntegration

We develop screening models using supervised discriminative
machine learning algorithmsthat are appropriate for tabular and
multimodal clinical data, including logistic regression, support
vector machines (SVMs) [118], and ensemble tree-based
methods [119-122]. These models are chosen for their
interpretability, robustness, and reduced risk of overfitting in
clinica datasets. Multimodal integration is performed by
combining features from speech, clinical text, and OASIS data
within a unified modeling framework. Models are trained to
estimate the probability of MCI-ED at the patient level.
Tempora aspects of speech-derived features are summarized
at the patient level prior to modeling, rather than modeled using
complex seguence architectures, to maintain feasibility and
stability given sample size considerations.

Component 3: Model Training, Validation, and Fairness
Assessment

Model training and hyperparameter tuning are conducted using
stratified nested cross-validation, with inner loopsfor parameter
selection and outer loops for performance estimation. Model
performance is evaluated using the area under the receiver
operating characteristic curve (AUC-ROC) and area under the
precision-recall curve, along with calibration measuresto assess
agreement between predicted risk and observed outcomes. To
evaluate equitable performance, we assess model metrics
stratified by race, sex, and age group. Fairness-related measures,
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including group-wise differences in sensitivity and specificity
and calibration across subgroups, are examined. When
systematic performance differences are observed, we explore
mitigation strategies such asreweighting or threshold adjustment
and reassess model performance.

Component 4: Final Model Evaluation and Output

In the final step, the selected model is evaluated on an
independent validation dataset to provide an unbiased estimate
of performance. The screening agorithm produces a
patient-level risk score indicating the likelihood of MCI-ED,
which isintended to support clinical awareness and referral for
further cognitive evaluation rather than serve as a diagnostic
tool. The resulting algorithm and associated feature sets are
prepared for downstream evaluation of clinica use and
integration into HHC workflows.

Results

Initial Study Population and Clinical Characteristics

Between February 2024 and July 2025, we enrolled 114 HHC
patients who met eligibility criteria and completed
study-administered  cognitive  assessments.  Following
standardized review of the cognitive assessments and
prespecified group-allocation procedures, 55 participants were
classified as MCI-ED cases and 59 as cognitively normal
controls. The cohort had abalanced sex distribution (n=58, 51%
female) and was racially and ethnically diverse (n=63, 55.3%
Black). Most participants were insured by Medicare (n=75,
66%), and 44% (n=50) lived alone.

In descriptive comparisons, participants classified as cognitively
impaired had ahigher prevalence of urinary incontinence (21/55,
36.8% vs 13/59, 21.4%), anxiety (32/55, 57.9% vs 23/59,
39.3%), and impaired vision (14/55, 26.3% vs 4/59, 7.1%), as
well as greater dependence in activities of daily living (41/55,
73.7% completely dependent vs 38/59, 64.3%). These results
arereported to characterize the cohort and should beinterpreted
descriptively rather than as definitive group differences.

Audio-recorded patient-nurse encounters had amedian duration
of 19 (IQR 12-23) minutes and a median of 56 (IQR 31-80)
utterances per encounter. Across encounters, nurses contributed
more words than patients (median 842, IQR 461-1218 vs 589,
IQR 303-960), consistent with the structure of routine HHC
visits and motivating inclusion of interactional features.

Preliminary M odeling Results

We conducted exploratory modeling analyses to evaluate the
feasibility of distinguishing MCI-ED cases from cognitively
normal controlsusing (1) speech-derived measures, (2) clinical
text, and (3) structured EHR/OASIS variables, as well as
multimodal combinations of these data sources. These analyses
are intended to assess feasibility and inform subsequent model
refinement and validation, rather than to provide definitive
estimates of performance.

Speech-Derived Representations

Acoustic and temporal speech features were encoded using
SpeechDETECT, including parametersrel ated to phonetic motor
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planning (Table 1, component 1). Vocal emotion-related cues
were encoded using GeMAPS (Table 1, component 2).
Linguistic features included handcrafted measures capturing
lexical richness, syntactic complexity, and semantic/fluency
markers (eg, repetition and filler words; Table 1, component
3), and psycholinguistic indicators were extracted using LIWC
2015. In addition, we evaluated pretrained transformer language
models for transcript-based representations.

Unimodal Performance

When modeling patient speech alone, DistilBERT achieved the
strongest performance among evaluated BERT-based models
(F1=69.39; AUC-ROC=69.36). For clinica  notes,
BioClinica BERT yielded the best performance among evaluated
language models (F;=64.29; AUC-ROC=69.17). Among
traditiona classifiers, alinear SVM performed well using patient
speech features (F;=75.0; AUC-ROC=75.94). Models using

structured EHR/OASIS variables achieved their best
performance  with  logistic  regression  (F;=75.56;

AUC-ROC=79.70).

Nurse Speech and I nteractional Features

Incorporating nurse speech and interactional measures (Table
1, component 4) resulted in improved discrimination (SVM
F,=85.0; AUC-ROC=86.47), suggesting that patient-nurse
interaction captures complementary information beyond patient
speech alone.

Multimodal I ntegration

In multimodal analysesintegrating speech features, interactional
measures, and structured EHR/OASIS variables, the SVM
achieved the highest overall performance (F;=88.89;
AUC-ROC=90.23). Examination of model contributions
suggested that reduced lexical diversity, longer patient pauses,
increased nurse dominance in conversation, selected
psycholinguistic markers, and specific EHR variables (eg,
non-insulin-dependent diabetes, pressure ulcers, and living
alone) contributed to discrimination.

Overall, these results support the feasibility of extracting and
integrating multimodal signalsfor MCI-ED screeningin HHC.
Final model evaluation, subgroup performance assessment, and
fairness analyses will be conducted using the prespecified
validation procedures after completion of recruitment and the
finalized analytic dataset.

Discussion

Overview

This study protocol describesamultimodal screening approach
for identifying MCI-ED in HHC using routinely generated data
streams. The central hypothesisisthat spontaneous patient-nurse
conversations, combined with structured HHC assessment data
(the federally mandated OASIS instrument) and information
extracted from free-text clinical documentation, can provide
complementary signals for earlier identification of cognitive
impairment than any single data stream alone.

The implementation results reported in this manuscript
demonstrate the feasibility of an end-to-end workflow in HHC,
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including audio capture during routine visits, automated
transcription and speaker labeling, extraction of acoustic,
linguistic, emotional, and interactional features, and linkage to
clinical notesand OASISvariables. Exploratory analysesinthe
analyzed cohort suggest that incorporating nurse speech and
interactional features can improve discrimination beyond patient
speech alone, consistent with the premise that conversation
structure (eg, timing, pauses, turn-taking balance, and
interactivity) contains clinically relevant information. These
findings should beinterpreted asfeasibility and proof-of-concept
evidence, rather than definitive estimates of model performance.

A substantial body of prior work has demonstrated that speech
markers can differentiate individuals with Alzheimer disease
from cognitively unimpaired controls, often using structured or
semistructured tasks (eg, picture description, verbal fluency,
and reading) collected in controlled environments [13]. While
these approaches have been valuable for benchmarking and
understanding underlying patterns, they may be less sensitive
to the subtle and heterogeneous manifestations of MCI-ED and
may not reflect communication behaviors during real-world
clinical encounters.

This study extends this literature in 3 important ways. First, it
shifts the speech signal from standardized tasks to naturally
occurring clinical interactions in HHC, where pragmatic,
temporal, and turn-taking patterns can be observed at scale.
Second, it models not only patient speech characteristics but
also interactional dynamics (including nurse speech), which
may reflect clinician adaptation to support patients and/or patient
difficulty maintaining conversational flow. Third, it advances
amultimodal framework by integrating conversational speech
features with (1) structured assessment variables from OASIS
and (2) MCI-ED—related information embedded in free-text
documentation or spoken conversation but not consistently
represented in structured EHR fields. Together, these extensions
aim to improve the practical relevance of screening in HHC
settings where comprehensive cognitive evaluations may be
limited.

Recent advancesin minimally invasive approachesto Alzheimer
disease detection, including blood-based biomarker testing in
symptomatic individuals, reflect increasing clinical emphasis
on earlier identification. However, biomarker confirmation alone
does not characterize how cognitive decline affects
communication during routine care. Changes in speech and
language, such as reduced fluency, disrupted discourse
organization, and altered vocal control, often emerge early and
reflect functional impairment that is not captured by biological
measures. The screening approach described here targets this
complementary dimension by modeling communication
behaviors observed in routine patient-nurse encounters,
providing ecologically valid indicators of cognitive change.
Integrating speech-based indicators with other clinical
information, including biomarker evidence when available, may
support amore comprehensive assessment of cognitive decline
and its impact on real-world functioning.

Limitations

Severa limitations should be considered when interpreting these
results. Firgt, findings are based on data from a single HHC
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organization and a modest sample, which may limit
generalizability and yield performance estimates that are
sensitive to sampling variability. Second, audio quality,
background noise, and automated transcri ption/speaker-labeling
errors can affect the accuracy of extracted acoustic, linguistic,
and interactional features. Third, interactional measures may
reflect both patient cognitive-linguistic status and clinician
communication style or workflow constraints, which can
introduce confounding if not explicitly modeled. Fourth,
interactional measures may reflect both  patient
cognitive-linguistic status and clinician communication style
or workflow constraints, which can introduce confounding if
not explicitty modeled. Fourth, the protocol focuses on
English-speaking participants with sufficient hearing/vision to
complete cognitive testing; results may not generalize to other
language groups or to patients with sensory limitations, who
arecommon in HHC. Finally, cross-sectional classification does
not establish whether speech and interaction markers predict
future cognitive trajectories, underscoring the need for
longitudinal evaluation.

Future Directions

Several avenues for future research could strengthen both the
scientific rigor and clinical use of this approach. First,
prospective longitudinal studies are needed to move beyond
cross-sectional classification and evaluate whether speech and
interactional markers can predict cognitive decline trajectories
or functional deterioration over time. Such studieswould clarify
whether these features capture progressive change in addition
to baseline differences. Second, externa validation across
diverse HHC agencies, geographic regions, and care delivery
models will be essential to assess model transportability and
identify when recalibration is necessary. Third, more granular
analysisof conversational dynamics could distinguish clinically
meaningful interaction patterns—such as repair sequences,
prompting behaviors, and topic maintenance difficulties—from
structural features that primarily reflect workflow or
documentation practices. Fourth, incorporating clinician
feedback through human-in-the-loop development cycles can
help identify model failure modes, enhance interpretability of
predictions, and establish saf e deployment threshol dsinformed
by real-world use cases. Finally, pragmatic clinical use trials
are needed to determine whether integrating speech-based
screening into HHC workflowsimproves downstream outcomes,
including timeliness of formal cognitive evaluation, care plan
modifications, and patient safety. Collectively, these efforts
would bridge the gap between technical performance and
meaningful improvements in care delivery for older adults at
risk of cognitive decline.

Dissemination Plan

Findings will be disseminated through peer-reviewed
publications and presentations to clinical and informatics
audiences. To support reproducibility while protecting privacy,
the study team plans to share (1) detailed feature definitions
and extraction procedures, (2) deidentified analytic code and
configuration files where permissible, and (3) the annotation
schema and evaluation framework for text extraction.
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