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Abstract

Background: Diabetes mellitus (DM) is a major noncommunicable disease with a significant increase in prevalence,
especially in low- and middle-income countries. The latest International Diabetes Federation Diabetes Atlas (2025) reports
that 11.1% of the adult population (20 to 79 years old) is living with diabetes, with over 4 in 10 unaware of their condition.
Early diagnosis and treatment of diabetes reduce the risk and slow the progression of debilitating complications, such
as amputation, vision loss, renal failure, cardiovascular disease, dementia, some cancers, and infections like tuberculosis
and severe COVID-19. Current screening methods for diabetes are invasive and costly. This has limited their utilization,
especially in high-density populations and low- and middle-income countries such as Indonesia. Blood Glucose Evaluation
and Monitoring (BGEM) is a machine learning algorithm developed by Actxa to analyze photoplethysmography data from
wearable devices for diabetic risk assessment. Its noninvasive and user-friendly nature makes it a strong candidate for fulfilling
the need for a diabetes screening or monitoring tool.

Objective: The aim of this study is to collect a large and more diverse dataset for the training of BGEM machine learning
models. This dataset is intended to improve the model’s generalizability and to evaluate its performance across different age
groups, racial groups, and skin types, with the goal of enhancing accuracy and robustness for diabetes risk assessment and
glucose monitoring.

Methods: Adult participants aged 18 years and above, with either a diabetic or a nondiabetic history, who reside in Greater
Jakarta Area, Indonesia, were approached for recruitment. Blood glucose was assessed using laboratory blood analysis from
capillary or plasma samples after fasting and at 1, 2, and 3 hours after a meal. BGEM data were also collected at each of these
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time points. Anthropological measurements with a standardized questionnaire on physical activity, demographic information,
respondent’s diabetic status, and current medications taken were also collected.

Results: Between June and October 2024, 885 participants were enrolled. Eight photoplethysmography recordings per
participant were collected across 4 meal time points using 2 wearable devices in addition to the collection of clinical
measurements, blood sampling, and related questionnaires.

Conclusions: This protocol paper outlines the methodology designed for assessing and interpreting participants’ blood sugar
profiles, especially on demographic variability, in order to evaluate BGEM, a photoplethysmography-based artificial intelli-
gence model designed to estimate blood glucose levels and diabetic risk. The clinical trial was conducted on Indonesian
participants with and without diabetes while considering various influencing factors. This dataset is designed to enable
assessment of the model’s performance across diverse racial, risk factors, and skin-type groups, with the aim of making the

model more valid and reliable.

Trial Registration: ClinicalTrials.gov NCT06642467; https://clinicaltrials.gov/study/NCT06642467
International Registered Report Identifier (IRRID): DERR1-10.2196/76558

JMIR Res Protoc 2026;15:e76558; doi: 10.2196/76558

Keywords: diabetes mellitus; noninvasive; blood glucose; screening; machine learning; photoplethysmography; artificial
intelligence; wearables; BGEM; Indonesia; Blood Glucose Evaluation and Monitoring

Introduction

Diabetes mellitus (DM) is a major noncommunicable disease
that has affected around 500 million people worldwide
and continues to rise up to 700 million people globally
in 2045 [1]. Other noncommunicable diseases’ death risks
have decreased by 20% since the turn of the century;
DM, in contrast, has increased by 3% worldwide. The
latest International Diabetes Federation Diabetes Atlas (2025)
reports that 11.1% of the adult population (20-79 y) is living
with diabetes, with over 4 in 10 unaware of their condition.

Several reports have projected that about 1 in 2 adult
patients with diabetes are unaware of their diagnosis [1-3].
Undiagnosed DM has resulted in an increase of cases with
complications and elevated the burden of the disease, as
younger undiagnosed DM cases have more rapid progres-
sion of complications and lower response to general DM
treatment. This has been shown to be higher in low- and
middle-income countries, where 80% of the DM population
lived, thus reflecting the enormous burden of the disease [4,
5]. Meanwhile, early diagnosis and treatment of DM reduce
the risk and slow the progression of debilitating complications
such as amputation, vision loss, renal failure, cardiovascular
disease, dementia, some cancers, and infections including
tuberculosis and severe COVID-19 [6]. All of the above calls
for early screening and frequent monitoring strategies that are
both effective and cost-efficient.

Currently available methods to detect DM are hemo-
globin A, (HbA{.) level, fasting plasma glucose, 2-hour
glucose tolerance test, and random plasma glucose test. All
these methods are invasive; they require trained professio-
nals and laboratory equipment to be performed correctly.
The American Diabetes Association has recommended DM
screening starting at 35 years and every 3 years after,
especially for people with obesity, overweight, and one risk
factor [7]. In low- and middle-income countries, this is even
harder to implement due to the cost and scarce resources of
such screening methods [5,6,8].
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Indonesia, a middle-income country with a population of
283 million, faces a big challenge in DM management. It
was estimated that DM prevalence was 9.49% (2024) and
will increase to 16.09% (2045) without any major effective
intervention [9]. As in any other low- and middle-income
countries, the cost and availability of DM-related testing have
prohibited Indonesia from enacting an effective prevention
or screening program; therefore, an affordable, effective, and
simple screening or monitoring method for DM will be a
boon in the national health program.

Photoplethysmography is a noninvasive optical technol-
ogy that measures light absorbance to assess blood vol-
ume changes. It has been widely integrated into wearable
devices, such as smartwatches, to monitor heart rate (HR)
and other physiological parameters [10]. Emerging research
suggests that photoplethysmography data may also be
valuable for detecting DM and estimating glucose levels
[11-13]. The noninvasive nature, affordability, and conven-
ience of photoplethysmography make it a promising tool for
early detection and preventive screening of DM, especially
in large and diverse populations, such as in Indonesia.
Despite photoplethysmography technology’s potential use in
estimating blood glucose and DM prediction, several issues
have been reported to influence its performance, such as
medication status of subjects [14], motion artifacts [15], and
also skin types [16]. This protocol paper will strive to address
these issues to improve the reliability (accuracy and robust-
ness) of photoplethysmography-based technology in wearable
devices for blood glucose monitoring and DM risk predic-
tion through advanced artificial intelligence (AI) and data
analytics.

Blood Glucose Evaluation and Monitoring (BGEM), a
machine learning (ML) algorithm developed by Actxa to
analyze photoplethysmography data for assessing diabetic
risk. It is one of the first ML models deployed in com-
mercial wearable devices. BGEM was trained using data
collected from a registered clinical trial (NCT05504096)
conducted at KK Women’s and Children’s Hospital in
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Singapore, involving 500 Singaporean participants. The
reported accuracy of BGEM is 84.7% [12]. The model’s
performance is sensitive to demographic features, with the
inclusion of demographic data significantly enhancing its
accuracy [13]. BGEM would benefit from a larger and more
diverse training dataset, as the current training data consists
primarily of Singaporean participants, predominantly healthy
females.

In addition to glycemia prediction, novel methods for
diabetic risk assessment and management based on multiple
glucose measurements may be developed using BGEM due
to its lower cost and noninvasiveness. Glycemic variability,
which refers to fluctuations of blood glucose concentration
that happen in a day or similar timeframes on different
days, has been shown to be associated with microvascu-
lar and macrovascular damage in patients with DM [17].
Glycemic variability has been proposed in multiple studies
for DM management; however, difficulties in the measure-
ment and consensus on its optimal value, even with recent
more widespread use of continuous glucose monitoring, have
limited its use in the general population [17,18], despite the
general acceptance that it is a promising indicator for DM
control.

Here, we present the protocol for a registered clinical trial
(NCT06642467) designed to collect a larger and more robust
training dataset to enhance BGEM’s performance. This study
will collect data to improve current algorithm performance,
with an attempt to generalize the diagnostic findings from
the previous clinical study to specific groups of participants,
with the goal of enhancing accuracy and robustness for
glucose monitoring and diabetes risk assessment. The study
aims to comprehensively collect photoplethysmography data
using 2 different types of wearable devices at multiple time
points before and after a breakfast meal. Both capillary
and plasma blood samples were collected and subjected to
thorough laboratory analysis. Participants from Indonesia
were recruited, ensuring a balanced representation in terms of
diabetic status (diabetic or nondiabetic) and gender. Addi-
tionally, a comprehensive questionnaire was used to gather
essential information, capitalizing on the diversity of the
training data, including factors such as hypertension, skin
type, and other relevant variables, which have been repor-
ted to possibly influence either photoplethysmography sensor
readings or ML model prediction.
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Methods

Participant Recruitment

A total number of 885 participants from adults aged 18 years
and above were recruited. These participants reside in the
Greater Jakarta Area, Indonesia, and were from the diabetic
exercise group, from staff and family members of Krida
Wacana Christian University (Ukrida), and from its affiliated
organizations. Participants were recruited using an online
registration provided by the research team. Exclusion criteria
were implemented as follows: BMI >37 kg/m?, diastolic
blood pressure =120 mmHg, and systolic blood pressure =180
mmHg, wearing a pacemaker, having fever or any other acute
critical illness during the data collection, and pregnant female
participants. All subjects received an explanation on the study
purpose, protocol, and risks, and also signed the informed
consent prior to admission to the research study.

Study Design

This study utilizes a cross-sectional design with a short-term
follow-up post meal for blood glucose monitoring, from
July 30 to October 5, 2024, at the Ukrida Hospital, Jakarta,
Indonesia. There was an a priori aim to assess the measure-
ment error of the 4 groups, males and females with diabetes
and without diabetes, separately. A sample size of 200 for
each group was determined using the methods described by
Bland and Altman [19]. Hence, a total sample size of 800
was required to provide a 95% CI of +0.24xSD. Allowing for
about 10% dropout, a total sample size of about 890 subjects
was planned for recruitment.

The study will explore BGEM blood glucose prediction
capabilities compared to laboratory blood analysis from
capillary or plasma blood samples, with the study work-
flow summarized in Figure 1. The subjects were given an
explanation on the study, asked for informed consent, and
given a numeric identity tag to ensure anonymity of the
dataset after undergoing a minimum of 8 hours of fasting
before admittance to the study. Subjects undertook weight,
height, waist circumference, and blood pressure measurement
using GEA ZT120 body scales, tape measure roll, and Beurer
BM26 sphygmomanometer, respectively. BMI scores were
calculated from the weight and height of the subjects to
evaluate obesity or metabolic condition of the subjects.
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Figure 1. A conceptual framework of study design from recruitment, data collection, to discharge for 473 participants who self-acknowledged having

diabetes mellitus (DM) and 412 participants who did not (non-DM).

Patient recruitment;

473 DM subjects and 412 non-DM subjects

' Upon patient arrival:
i v Protocol overview
v' Clinical measurements
and patient exclusion
v Informed consent

| Questionnaire
' completion

Subsequently, each participant’s photoplethysmography data
at the fasting time point (the first time point) were collected
using both a smart ring (JC Smart Health Ring 2301B) and a
smartwatch (Actxa Spark+Series 2), both provided by Actxa
Pte Ltd. Simultaneously, blood samples were obtained from
2 sources: capillary blood for glucose concentration measure-
ment using Accu-Chek (Roche) and plasma blood from the
cubital vein for laboratory analysis, as described in a later
section.

}
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Discharge

Participants then consumed a 552-kcal meal set with 79.8
g of carbohydrate content prepared by Ukrida Hospital. This
meal was chosen to ensure adequate sustenance and sati-
ety after overnight fasting, as sugary drinks alone may not
sufficiently fulfill. The nutritional composition of the meal is
detailed in Textbox 1 and Table S1 in Multimedia Appendix
1.

Textbox 1. Nutritional value of the set meal for the subjects, given after subjects fast for a minimum of 8 h and undergo first
blood sample collection and photoplethysmography reading from wearables.

Energy (kcal): 552.1
Water (g): 241.8

Protein (g): 19

Protein percentage: 13.8
Fat (g): 19.3

Fat percentage: 31.5
Carbohydrate (g): 79.8
Carbohydrate percentage: 57.8
Dietary fiber (g): 5.2
Polyunsaturated fatty acid (g): 1.8
Cholesterol (mg): 33
Vitamin A (u#g): 1396.8
Carotene (mg): 0.4
Vitamin E (eq.) (mg): 0.8
Vitamin B1 (mg): 0
Vitamin B2 (mg): 0.1
Vitamin B6 (mg): 0.6
Total folic acid (ug): 31.8
Vitamin C (mg): 10.7
Sodium (mg): 1015.5
Potassium (mg): 549 .4
Calcium (mg): 59.2
Magnesium (mg): 66.2
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Phosphorus (mg): 231.5
Iron (mg): 2.5
Zinc (mg): 1.6
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Participants then underwent measurements at the second time
point (1 h postprandial), third time point (2 h postprandial),
and fourth time point (3 h postprandial). Photoplethysmogra-
phy data collection followed the same procedure as the first
time point using both the smartphone and the smart ring.
For blood sample collection and testing, the third time point

followed the same procedure as the first time point, with both
capillary and plasma blood samples collected and analyzed.
At the second and fourth time points, plasma blood collection
was omitted, and only capillary blood samples were obtained
and tested. Further details are provided in Table 1.

Table 1. Blood glucose metabolism-related data collection from photoplethysmography sensors from 2 wearables, a glucometer, and blood samples

based on several time points before and after meal.

Measurements Smart ring? Smartwatch® Glucose meter® Plasma blood?
First time point Yes Yes Yes Yes

(fasting state)

Second time point Yes Yes Yes No

(1 h postprandial)

Third time point Yes Yes Yes Yes

(2 h postprandial)

Fourth time point Yes Yes Yes No

(3 h postprandial)

4JC smart health ring 2301B.
bActxa Spark + Series 2.
“Roche, ACCU-CHEK guide.

dFull blood count: Sysmex XN-550. Plasma glucose: Roche, Cobas ¢111 Analyzer. Hemoglobin A level: Finecare FIA Meter III Plus.

During the 1-hour intervals at the last 3 time points, while
waiting between data and sample collection, participants
were asked to complete the International Physical Activity
Questionnaire long form, along with questionnaires related to

DM and other factors that may affect photoplethysmography
reading and BGEM prediction that follows, such as skin type,
treatment status, dominant hand, and race (Table 2).

Table 2. Baseline study questionnaire and test descriptions collected from the study’s participants.

Questionnaire and test Description of content References

Demographic Five items: age, gender, ethnicity, handedness, an Fitzpatrick skin type [13]

Diabetic status and history Six items: family history, status, year diagnosed, medication, gestational diabetes, and drink [13,20-23]
consumption

Relevant medical history Four items: smoking, hypercholesterolemia, hypertension, and related medication [13,21-23]

Physical activity International Physical Activity Questionnaire (IPAQ) long form; 27 items [24]

Clinical measurements Four items: weight, height, waist circumference, and blood pressure [13,20,21,23]

Pre-photoplethysmography Seven items: time of medication, time of meal, meal content, physical activity in 24 h, last,  [12,25]

measurements questions duration, and intensity

Ethical Considerations

All protocols were performed under hospital’s medical staff
supervision at all times. Ethics approval for the study has
been obtained from the Ukrida Faculty of Medicine & Health
Sciences ethical committee on July 15,2024 (1779/SLKE/IM/
UKKW /FKIK/KEPK /VI11/2024).

Blood Sample Analysis

All capillary blood samples were analyzed using the Accu-
Chek Guide glucometer (Roche, USA). Cubital plasma
blood samples were analyzed for full blood count using
the Sysmex XN-550 (Sysmex, Japan), plasma blood glucose
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using the Cobas C111 Analyzer (Roche, Switzerland), and
HbA . levels using the FineCare FIA Meter III Plus (Gongu
Wondfo, China). These instruments were available at the
Ukrida Hospital clinical laboratory. All hospital equipment
was routinely calibrated according to the provider’s manual.

Photoplethysmography Data Collection

In this study, 2 wearable devices were utilized: the Actxa
Spark+Series 2 smartwatch and the JC Smart Health Ring
2301B. Both devices are equipped with a green light
photoplethysmography sensor that captures photoplethysmog-
raphy signals at 50 Hz, ensuring adequate signal quality for
HR analysis.
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During data collection, the smartwatch was worn on the
participant’s nondominant wrist, positioned at least 2 finger
widths away from the wrist bone. The smart ring, selected
based on appropriate sizing, was worn at the base of the index
finger on the same hand. To ensure optimal signal acquisi-
tion, the ring’s photoplethysmography sensor was positioned
facing the inner side of the finger. Each photoplethysmogra-
phy recording session lasted for 5 minutes. Participants were
instructed to remain seated, maintain a relaxed posture, and
minimize movement, with their nondominant hand resting on
a table to reduce motion artifacts.

Photoplethysmography data were collected by the
wearable devices and transmitted via Bluetooth to a smart-
phone. The smartphone then relayed the data via the internet
to Actxa’s company server for storage and further analysis.

Non-Photoplethysmography Data
Preprocessing

All 7 non-photoplethysmography features required for
downstream model training—age, gender, body weight, body
height, meal timing, diabetes status, and family history of
diabetes—were complete and free of errors. Automated blood
test results and finger prick glucometer measurements also
contained no missing or invalid values.

Medication status, collected via participant self-report,
was manually curated by medical personnel. Other question-
naire data will be further cleaned or curated as needed for
downstream analyses. Missing values, if encountered, can
be addressed by tracing the source information or applying
statistical methods, such as decision tree—based imputation.

Photoplethysmography Data
Preprocessing

Each photoplethysmography recording was required to be at
least 4 minutes in duration. No recordings from this clinical
trial were excluded based on this criterion.

One participant was absent for the fourth measurement
(3 h after the meal). For this participant, the available time
point data were retained for individual data point analy-
ses. However, in the time-series analysis (see the section
photoplethysmography Data Feature Extraction), the data
were excluded due to the incomplete sequence.

Raw photoplethysmography signals were obtained from
the smartwatch (16-bit binary) and smart ring (23-bit
binary) devices. Raw photoplethysmography data were
preprocessed using a previously developed pipeline incorpo-
rating frequency noise filtering and outlier correction [12].

During the signal preprocessing stage, the raw digital
signals were first converted to analog values using the
following formula:

Signal

Vi=5 X lflrza (for smartwatch data)
Signal .

Vi=5 X o (for smart ring data)
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A Chebyshev Type II bandpass filter (0.3-5 Hz) was
applied to remove low- and high-frequency noise, including
motion artifacts. Outliers were identified, when necessary,
using a z score threshold of 3 SD from the mean and replaced
with reasonable estimates via nearest-neighbor interpolation
prior to HR variability feature extraction.

Photoplethysmography Data Feature
Extraction

To accurately identify key temporal positions of the photo-
plethysmography waveform, potential systolic peaks were
first detected using sign changes in the first-order difference
of the photoplethysmography signal, specifically identifying
transitions from positive to negative values. The leading and
trailing troughs of the pulse wave were then detected by
inverting the photoplethysmography signal and applying the
same first-order difference and sign change method.

HR was then calculated using the key temporal positions.
The measured HR was required to exceed 48 beats per
minute. No recordings from this clinical trial were excluded
based on this criterion.

Using the identified key temporal positions, a feature
extraction module was then applied to the photoplethys-
mography data fragments to compute a comprehensive
set of features. The panel of features was established in
our previously reported model, which included 248 fea-
tures related to HR, HR variability, waveform morphology,
energy metrics, complexity measures, and continuous wavelet
transform [12].

Prior to model training, feature selection techniques
were applied to eliminate redundant features. This process
was conducted exclusively on the feature set derived from
photoplethysmography data and involved 2 stages. First,
a self-correlation matrix was calculated, and features with
a Pearson correlation coefficient >0.7 were removed to
reduce multicollinearity. Second, the correlation between
each remaining feature and the regression target—blood
glucose levels measured via finger prick tests under different
mealtime conditions—was assessed. A subset of features with
the strongest correlations to the target variable was retained,
with the final number determined empirically to optimize
model performance.

To account for the varying feature magnitudes, Min-
Max scaling was applied. Since the regression target
(blood glucose values) exhibited a nonnormal distribution,
a Box-Cox transformation was used for normalization.
Following model prediction, an inverse Box-Cox transforma-
tion was performed to restore the predicted blood glucose
levels to their original scale.

Model Training

During model training, 10-fold cross-validation was applied
to obtain a robust estimate of generalization performance
and to monitor potential overfitting. To prevent data leakage,
particularly biometric identity-related features potentially
embedded in the photoplethysmography data [26], we ensured
that fragments from the same participant were not included
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in both the training and validation sets. Data collected in this
clinical trial were used exclusively for model training and
validation.

Additionally, given that this study employs short-term,
mealtime prospective measurements of blood glucose
profiles, we aim to leverage each participant’s individual
blood glucose fluctuation pattern to explore prediction of
diabetes risk or glucose levels and probable glycemia
monitoring post meal. To achieve this, the photoplethysmog-
raphy data from the 4 mealtime points for each participant
will be combined into a time series, which will serve as input
to a model trained to predict glucose levels or diabetes risk
across all 4 points of the meal cycle. This approach allows
the longitudinal aspect of the data—the participant-specific
fluctuation pattern—to be fully utilized, potentially improving
model performance and predictive accuracy.

Statistical Analysis

Demographic data for continuous variables will be presented
as mean (SD), and categorical variables will be presented
as count (percentage). Univariate analyses will be performed
using ¢ tests for independent groups for continuous variables
and chi-square tests for categorical variables. Discriminations
are assessed by plotting the receiver operating characteristic
curve and calculating the area under the receiver operating
characteristic curve (AUC) or C statistic. The accuracy of
the prediction model will be analyzed using both Type I
and Type II Parkes Error Grids. The sensitivity, specificity,
and Fi-score of the BGEM model will also be evaluated
and presented to give a clear description of its strength and
weakness.

The Parkes Error Grid is used to assess how clinically
risky an inaccurate blood glucose reading might be. Each
device reading is compared with a reference value and placed
into 1 of 5 zones. Zone A means the reading is clinically
accurate and would not change treatment. Zone B reflects
small errors that might adjust a decision but have little or
no impact on outcome. Zone C includes errors likely to
affect clinical results. Zone D involves inaccuracies that could
lead to clearly risky treatment decisions. Zone E represents
dangerous errors that could cause severe or life-threatening
consequences if acted upon [27].

The ML model will be trained using Lasso regression,
cross-validation, and other ML techniques to find the optimal
regularization parameter to ensure that the model generalizes
to unseen data. The dataset is initially divided into a training
set and a validation set. The training set is used for model
development and hyperparameter tuning, while the validation
set is reserved for a final, unbiased evaluation of the model’s
performance. Analysis will ensure that the model does not
overfit to the training data and is able to predict outcomes
on new data with confidence. Once the optimal regulariza-
tion parameter is identified through cross-validation, a final
regression model is trained on the entire training set using this
optimal regularization parameter value.

The blood sugar profiles of subjects with varying
demographic characteristics will be analyzed and compared
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statistically to quantify the similarities and differences
between individuals. Profile analysis and correlation and
regression techniques will be used for the comparison of the
blood sugar profiles, taking into consideration the correlation
between the repeated measurements within each individual.
Trending analysis will also be performed using mixed effects
models and clustering methods, so as to incorporate the
correlated repeated measurements at the 4 time points for
each participant.

The data will be analyzed using statistical packages,
including Stata (version 19) and ML packages R and Python.
P values <.05 will be considered as statistically significant.

Results

The IRB approval was given on July 15, 2024, after which the
data collection was started on July 30, 2024, and finished on
October 5, 2024; the analysis was projected to be concluded
in the third quarter of 2025 and the results submitted for
publication at the end of 2025.

A total of 885 participants (473 with diabetes and 412
without diabetes) were enrolled. Eight photoplethysmography
recordings per participant were collected across 4 mealtime
points using 2 wearable devices. Participants completed the
International Physical Activity Questionnaire (IPAQ) long
form and additional questionnaires on diabetes and related
risk factors. Capillary and plasma blood tests were performed,
and results were recorded.

Discussion

Overview

This study will provide more data to further empower the
BGEM AI model that has been developed since 2022 [12].

Photoplethysmography feature data from participants,
collected across 4 time points, are intended to support the
improvement of model performance across diverse racial
groups, risk factors, and skin types in terms of its accu-
racy and robustness. The study design also addresses issues
that have been reported to influence photoplethysmography
sensors, such as motion artifacts.

The inclusion of additional clinical data such as anthro-
pometric measurement, HbA ., hematocrit, and other blood
parameters performed in this study will give a more expan-
sive view on factors that may influence photoplethysmogra-
phy blood glucose predictive ability [14-16,28]. Analysis of
these factors will provide insight into whether any of them
influence BGEM accuracy or can be used as additional data to
improve its performance.

This study is the first to report performance of photo-
plethysmography-based AI model used in the Indonesian
population. Population-wide DM screening in Indonesia
posed a problem to any health intervention program due to the
challenging geography and population spread across multiple
islands and diverse ethnicity of Indonesian people [29,30].
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Therefore, this study can become a foundation of BGEM use
in DM management, prevention, and screening in Indonesia.

DM, with its huge disease burden and increasing number
of afflicted populations, needs new, innovative, and effec-
tive means to control and minimize its impact [31,32]. This
protocol paper hopes to provide a base method in develop-
ing a noninvasive photoplethysmography-based AI model to
predict blood glucose level and evaluating DM status of the
subject.

Comparison With Previous Work

BGEM use in the relatively large Indonesian population is
unique and will become an important stepping stone for

Suradji et al

developing a noninvasive model that is effective in blood
glucose screening and monitoring and DM management. The
previous study of BGEM was performed in a female-domi-
nant and mainly non-DM population [13]; thus, this study
with a different gender make-up and larger DM popula-
tion (Table 3) will give a good contrast and data set with
different population characteristics that may increase the
model performance and generalizability [12,28].

Table 3. Comparison of basic population characteristics between the previous clinical study at KK Women’s Hospital, Singapore, and the current

study in Krida Wacana Christian University (Ukrida) Hospital, Indonesia.

Ukrida Hospital

Characteristics KK Women’s Hospital
Age (y), mean (SD) 38.73 (10.60)

Female proportion, n/N (%) 436/500 (90.3)

BMI (kg/mz), mean (SD) 24 .4 (5.13)

Type 2 DM? proportion, n/N (%) 157/500 (31.40)

44.22 (11.79)
535/885 (60.45)

26.77 (5.08)
473/885 (53.44)

4DM: diabetes mellitus.

The study has a comprehensive 4 time points of data
collection, which is more extensive [33,34], and will provide
a more complete view of how blood glucose level fluctuates
between different state of food intake. The additional 1 and 3
hours after the meal may give a clearer view of blood glucose
level changes compared to the standard fasting and 2-hour
postmeal that is already widely accepted. Additionally, the
use of Al in assessing glycemic variability is very limited
[35], and to our knowledge, no study using photoplethys-
mography-based sensors has been reported despite its strong
potential use for DM management. Therefore, this study will
also be giving new and novel insight on the topic.

Study Limitations

This protocol has certain limitations. We prioritized achiev-
ing a balanced distribution of gender and participants with
and without diabetes. With this focus, efforts were made to
increase the overall number of participants. As the sample
size grew, a broader range of demographic characteristics
was naturally captured, reflecting the inherent diversity of
the larger Indonesian population. However, no deliberate
strategies were employed to design or randomize demo-
graphic features; the observed diversity emerged organically
from the expanded participant pool. Several demographic

features, such as participants aged over 60, are underrepresen-
ted; this will undermine the understanding of photoplethys-
mography in BGEM’s predictive ability in elderly population.
Although the study includes a diverse range of ethnicities,
the overall ethnic composition does not reflect the general
proportions of the Indonesian population. This limits the
extent to which certain inferences can be drawn from the final
data analysis. Future studies with more proportional sampling
from the general Indonesian population should address this
bias.

Conclusions

This protocol paper outlines the methodology designed for
evaluating BGEM, a photoplethysmography-based AI model
designed to estimate blood glucose levels and diabetic risk.
The clinical trial was conducted on Indonesian participants
with and without DM, while considering various influenc-
ing factors. The protocol is distinctive as it aims to gener-
ate high-quality training data for the AI model, ensuring
balanced data structure, sufficient data quantity, diversity, and
comprehensive relevant information including unique data on
glycemic variability using wearables for downstream analysis
and future research.
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