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Abstract

Background: Wearable devices enable continuous measurement of physical activity, sedentary behavior, sleep, and heart
rate under free-living conditions. However, most validation studies rely on small, homogeneous samples; are conducted under
laboratory conditions; or lack gold standard ground-truth measurements, limiting the generalizability and accuracy of derived
metrics. There is a pressing need for open-access, large-scale, free-living validation datasets that include multisensor data from
diverse body locations and participant demographics to aid in model development.

Objective: The Oxford Wearable ECG, Activity, Circadian Rhythm, and Sleep Validation Study (OxWEARS) aims to (1)
validate accelerometer-based measurement of physical behaviors across 5 body sites against annotated camera data; (2)
validate measurements of sleep and sleep staging from 5 different body sites against polysomnography; (3) validate wrist-worn
photoplethysmography heart rate measurements against chest-worn electrocardiogram; and (4) generate a comprehensive,
annotated, and anonymized dataset for open-access research use.

Methods: This cross-sectional study will recruit approximately 160 adults (aged =40 years) stratified by age, sex, and BMI
from the Oxford BioBank. Over 3 days and 4 nights, participants will wear sensors on the wrists, chest, hip, thigh, and ankle.
Ground-truth measures will be obtained from a chest electrocardiogram patch for heart rate, a first-person camera for activity
annotation, an ankle-worn accelerometer for step count, and at-home polysomnography for sleep. An under-mattress sensor
will collect measures of sleep, respiration rate, and bedtime, and a subjective sleep diary will also be obtained. Signals from
different wear locations will be compared against the ground truth using precision, recall, F';-score, %, and agreement metrics.

Results: Recruitment commenced in November 2024, with 15 participants enrolled by May 2025. Overall, 50% of eligible
adults contacted were happy to consent to the study, with excellent compliance with the protocol observed to date. Data
collection is ongoing and expected to conclude in 2026, with the final annotated dataset made publicly available as soon as
possible thereafter.
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Conclusions: The OxWEARS study will generate an openly accessible dataset containing more than 10,000 annotated hours
from a stratified sample of adults. This will directly support scalable, generalizable human activity recognition efforts, while
also enabling robust development and benchmarking of wearable-derived health metrics.

International Registered Report Identifier (IRRID): DERR1-10.2196/78779

JMIR Res Protoc 2025;14:e78779; doi: 10.2196/78779
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Introduction

The use of wearable devices for the assessment of physi-
cal activity, sedentary behavior, and sleep allows for the
quantification of 24-hour human physical behaviors with-
out the recall and social desirability biases associated with
self-reported measures [1-3]. While these behaviors are
commonly measured using commercial- and research-grade
devices within epidemiological studies, the accuracy of the
derived metrics against gold standard ground truth is currently
uncertain. To date, most activity and sleep validation studies
of wearables have been of poor quality—conducted in small,
homogeneous cohorts; under laboratory conditions for a
single day; and often without a gold standard reference
[4,5]. Additionally, most studies focus on either sleep or
physical activity, resulting in a lack of ground-truth reference
measures for all behaviors across the 24-hour day.

While some accelerometer models have been trained
using free-living validation data, significant room for
improvement exists in model generalizability and specifi-
cally in improved performance in analyzing physical activity,
sedentary behavior, and sleep. For example, some validation
studies have collected wrist-based accelerometer data paired
with first-person camera images for behavior classification
[6,7], and these methods have subsequently been adopted
in large epidemiological studies for health research [8.9].
However, these data were collected in a convenience sample
over a single day without deference to age, sex, and BMI
[10]. Additionally, more multisensor datasets are needed
to compare data collected concurrently from different wear
locations, as reflected in the existing literature. For exam-
ple, large datasets exist with accelerometers worn on the
wrist [8,11], hip [12], and thigh [13-15]; however, there
is limited evidence regarding the harmonization of physical
behavior phenotypes generated from different wear locations
for subsequent statistical analyses. Furthermore, combining
different signals from newer devices, such as photople-
thysmography (PPG) and accelerometry, may improve the
detection of sleep, physical activity, and sedentary behavior
by providing additional data streams for model development.
Finally, in most validation studies, raw data are not published,
hampering external validation efforts and method develop-
ment to improve performance [4,16].

Therefore, our overarching aim is to collect a free-liv-
ing validation dataset, annotating wearable sensor data with
gold standard, ground-truth labeled data, for application to
large-scale accelerometer datasets with linked health records.

The main aims of this study are as follows:
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1. To validate the measurement of physical activity and
sedentary behavior from accelerometers worn on the
wrist, chest, waist, hip, thigh, and ankle compared with
ground-truth annotations from wearable camera data.

2. To validate the measurement of sleep and sleep staging
from accelerometers worn on the wrist, chest, waist,
hip, and thigh compared with gold standard polysom-
nography (PSG) sleep metrics.

3. To validate the measurement of heart rate and heart
rate variability from wrist-worn PPG sensors against
a ground-truth chest-worn electrocardiogram (ECG)
patch.

4. To generate an anonymized dataset of annotated
physical activity, sedentary behavior, sleep, and cardiac
monitoring data for unrestricted use by the wider
scientific community.

Methods

Ethical Considerations

Ethics approval was received from the University of Oxford
Central University Research Ethics Committee on August 1,
2023 (R74559). Before the initiation of any study proce-
dures, all participants were provided with an information
sheet (Multimedia Appendix 1) and gave written informed
consent using a digital signature platform compliant with ISO
27001 standards (E-Sign; E-Sign Ltd). Participants’ privacy
is of the utmost importance to us; therefore, no identifying
information will be published, and individual data will be
deidentified before any data release. Participants will receive
no compensation for their participation but will be provi-
ded with a nondiagnostic report on their sleep and physi-
cal behaviors during the course of the monitoring period.
Conforming to current ethical frameworks [17,18], written
consent to be recorded by the video camera is not required
from bystanders; however, participants will be instructed to
obtain verbal permission from and provide an explanation
of the device to family members, cohabitants, workplace
managers or supervisors, or other people in settings where
a reasonable expectation of privacy exists. This approach was
considered reasonable. A script and information card will be
provided for use if participants are questioned by members
of the public. While we obtain consent, we will also ask
participants to sign a privacy agreement for the recording of
video for this study in public and private settings (Multimedia
Appendix 2). Participants will be instructed on how to cover
the camera or pause data collection at any time when they
need privacy or feel uncomfortable or unsafe. Examples of
this include using the bathroom (in public or private), using
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public changing rooms, interacting with unrelated children,
or working in contexts where intellectual property must be
protected. In line with the ethical framework established by
Kelly et al [17], participants can request the removal of any
unwanted or sensitive footage potentially caught on camera.
Privacy concerns related to the wearable camera data are of
critical importance. Therefore, raw video footage will never
be released, and any examples used (such as for annota-
tor training) will be confined to the University of Oxford
research team. All data will remain on University of Oxford
Servers.

Data Deidentification

In line with previous research, no wearable camera data
will be shared outside of the University of Oxford [7].
Each participant will be assigned a unique study identifier,
which will be used to label all associated raw data files.
Because participants could potentially be deidentified based
on combined age, sex, and BMI, we will report only the
subgroup to which each participant belongs, as described
earlier. Finally, the start dates of the raw data will be
randomized, and time stamps will also be shifted by a small

Textbox 1. Inclusion and exclusion criteria.

Maylor et al

random amount so that they do not reflect the true dates and
times of the data. Similar steps have been used previously to
ensure deidentification of participants taking part in studies

[7].
Recruitment

OxWEARS is a cross-sectional study and will recruit a target
sample of 160 participants from the Oxford BioBank [19].
A sample size of 160 will provide 80% power to detect
a difference of 0.05 in Cohen »n score (effect size=0.25,
assuming an SD of 0.25 from previous studies [20]) between
3 age groups using a fixed effects one-way ANOVA
test (0=.05). The Oxford BioBank is a population-based
cohort of approximately 9000 participants aged 25 to 55
years recruited in Oxfordshire, United Kingdom, from 1999
onward. Inclusion and exclusion criteria for this study are
presented in Textbox 1. Recruitment will target the creation
of a final study cohort evenly balanced by sex, age (40-54
years, 55-64 years, and =65 years), and BMI (18.5-25 kg/mz,
25-30 kg/m?, and >30 kg/m?). The distribution of invitations
will be regularly rebalanced to achieve 13 to 14 participants
in each subgroup by the end of the study.

Inclusion criteria
* Enrolled participant of the Oxford BioBank
* Healthy adults aged 40 years and older
* Able to ambulate (with or without a walking aid)

Exclusion criteria
* Unable to speak or understand English

* Willing to wear multiple sensors over 3 days and 4 nights of data collection

* Self-reported neurological conditions or diagnosed sleep impairment
* Self-reported clinicians, teachers, caregivers, or anyone working in environments where image capture would be
inappropriate and who cannot commit to 3 consecutive days of image capture outside of these sensitive environments

* Unwilling to wear all the monitors according to the study protocol

Study Timeline

A study timeline is presented in Figure 1, outlining the overall
data collection period. Data collection will be conducted in
the free-living environment for 3 full days and 4 consecu-
tive nights. Following receipt of consent, an in-person study
setup visit is arranged, wherein 2 members of the research
team will meet the participant at their home to set up and
deploy the wearable sensors, camera, and under-mattress
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sleep analyzer for the data monitoring period, in addition to
the PSG sleep assessment for the first night only. One night
of PSG was chosen to balance participant and researcher
burden with the inclusion of a gold standard sleep assessment.
The distribution of ambulatory wearable sensors across the
body is presented in Figure 2, with further description in the
following methodological subsections.
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Figure 1. Overview flowchart of study activities during the data collection window. Green activities are conducted by the OXWEARS research team,
and blue activities are conducted or collected by the study participant. ECG: electrocardiography; PSG: polysomnography.
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Ground-Truth ECG Data Collection

Ground-truth cardiac monitoring will be conducted using a
clinical-grade single-lead wearable ECG patch (Bittium Faros
180; Bittium) affixed in a vertical orientation directly to the
skin on the chest immediately inferior to the jugular notch
and superficial to the sternum. Before adhesion, participants
with chest hair will be instructed to shave the designated area
to ensure adequate adhesion as per manufacturer guidelines.
Continuous single-lead ECG data will be collected at 250 Hz
and logged directly onto the ECG device for the entirety of
the monitoring period (24 hours/day). In addition to raw ECG
data, the monitor will be set to record continuous raw triaxial
accelerometer data at the chest at a sampling rate of 100 Hz
and with a dynamic range of +4g.

Ground-Truth Physical Behavior Data
Collection

To obtain ground-truth data on everyday activities, partic-
ipants will wear a first-person perspective video camera
(MIUFLY) during waking hours for 3 days, mirroring
procedures from prior studies using first-person image
capture to annotate physical activity and sedentary behavior
[7,21]. In this study, a wearable camera is worn by the
participant via a chest harness, neck mount, clip, or lapel
and continuously records video during participant waking
hours. Previous automated camera studies of this nature have
reported wear time compliance of more than 80% [22,23]. No
audio is captured by the camera, and all footage is encrypted
on the device so that only the research team can download
and view the video. Participants will be instructed on how to
cover the camera or pause data collection at any time when
they desire privacy or feel uncomfortable or unsafe. Exam-
ples of this include using the bathroom (public or private),
public changing rooms, interacting with unrelated children,
or working in contexts where intellectual property must be
protected.

Ground-Truth Sleep Assessment

On the first study night, ground-truth sleep data will
be collected with an ambulatory diagnostic multichannel
PSG system (SOMNO HD Eco; S-Med Limited). The

Table 1. Wearable device data capture.
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electroencephalogram (EEG) array will be attached in
accordance with the 10-20 system of electrode placement
[24]. The montage and recording settings (30-second epochs,
256 Hz sampling rate for EEG channels) will conform to the
American Academy of Sleep Medicine (AASM) recommen-
dations [25]. The following channels will be recorded: scalp
EEG (F3, F4, C3,C4, 01, and O2), bilateral references on the
mastoid processes (M1 and M2), grounding electrode (placed
on FpZ), a common scalp reference electrode (Cz), bilat-
eral electro-oculogram, 2-lead ECG, and 3-lead submental
electromyography. Participants will be asked to change into
sleeping clothes prior to sensor setup to minimize the risk
of electrode disturbance. Prior to recording, researchers will
check signal quality via a tablet and replace electrodes with
high impedance values (>5 k€2). The in-home sleep study will
be conducted for 1 night only. Participants will be instructed
to blink several times to indicate lights off at the time of their
choosing. Participants will be instructed on how to remove
the electrodes themselves following sleep, and a member
of the research team will make a return visit the morning
following the at-home visit to collect the PSG equipment and
answer any further questions regarding the study.

Wearable-Based Physical Behavior
Monitoring

Participants will be asked to wear 5 stand-alone wearable
devices continuously (24 hours/day) throughout the course
of the study period (Figure 2). The wear locations for the
sensors were selected based on their popularity in previ-
ous validation studies [4,5]. The recording specifications
of each device and sensor are detailed in Table 1. Wrist-
measured physical behavior data will be collected using a
combination of research-grade and consumer-grade devices.
Specifically, a multimodal research-grade device (ActiGraph
LEAP: ActiGraph LLC) consisting of triaxial accelerometer,
gyroscope, and PPG sensors will be worn on the partici-
pant’s dominant wrist. Similarly, a consumer-grade device
(Fitbit Sense 2; Fitbit by Google) with comparable multimo-
dal sensors to the ActiGraph LEAP will be worn on the
participant’s nondominant wrist, according to manufacturer’s
instructions.

Device Location

Sensors and recording settings

Heart rate

Chest

Dominant wrist

Bittium Faros 180
ActiGraph LEAP

dpsb
Fitbit Sense 2 Nondominant wrist 60 s epoch proprietary phenotypes
ActiGraph GT3X-BT Waist or hip
Axivity AX6 Dominant thigh
Axivity AX6 Dominant ankle

Accelerometer: 100 Hz, +4¢
Accelerometer: 32 Hz, +8¢; gyroscope: 128 Hz and 2000

1-channel ECG®: 250 Hz
PPG®: green (530 nm), 128 Hz

60 s epoch heart rate average
d

Accelerometer: 100 Hz, +8¢ —

Accelerometer: 100 Hz, +8g; gyroscope: 100 Hz, £2000 dps  —
Accelerometer: 100 Hz, +8g; gyroscope: 100 Hz, +2000 dps  —

3ECG: electrocardiogram.
bdps: degree per second.
°PPG: photoplethysmography.
dNot applicable.
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Participants will wear an ActiGraph GT3X-BT monitor
(ActiGraph LLC) on their hip continuously throughout the
data collection period, removing it only for water-based
activities. The device will be worn using an adjustable belt
strap, with a buckle for easier removal.

For thigh monitoring, a medical-grade hypoallergenic
adhesive dressing will be used to affix an accelerometer
(Axivity AX6; Axivity Ltd) on the anterior aspect of the
participant’s dominant thigh, wrapped in a nitrile sleeve for
protection. The Axivity AX6 houses a triaxial accelerometer
and triaxial gyroscope, which will both record at a sampling
frequency of 100 Hz and dynamic sensor ranges of +8g and
+2000 degrees per second, respectively.

As an additional measurement point for physical activ-
ity, a further Axivity AX6 device (with matching recording
characteristics) will be mounted on the dominant-side ankle,
wrapped in a nitrile sleeve using medical adhesive tape.
This is of specific interest for potential step count validation
[26], for which a separate study including video-captured
daily steps with concurrent ankle- and wrist-worn Axivity
AX6 devices will be conducted to assess the validity of
the ankle as a suitable ground-truth measure for step count
in 50 adults, incorporating machine learning methods to
estimate step count compared with proprietary algorithms
assessed previously [26]. This model will then be applied to
OxWEARS to compare step count from the ankle with each
of the other wear locations (chest, both wrists, hip, and thigh).

Nearable-Based Sleep Assessment
(Under-Mattress Sensor)

In addition to the ground-truth PSG sleep assessment,
a popular consumer-grade sleep device (Withings Sleep
Analyzer; Withings) will be set up by the researcher for
the full 4 nights of the study. The Withings Sleep Analyzer
will be placed under the participant’s mattress in line with
where the heart would be while the participant lies in bed.
It uses ballistocardiography and a built-in microphone to
estimate sleep duration, efficiency, sleep onset latency, sleep
staging (awake, light, deep, or rapid eye movement sleep), as
well as breathing rate and snoring events, using proprietary
algorithms. It has shown some early promise as a poten-
tial “nearable” device for individuals to monitor long-term
sleeping patterns without the need to physically wear a device
[27].

Subjective Sleep Assessment

As a final complementary measure of sleep duration and
quality, participants will additionally be asked to complete
a standardized self-report sleep diary on each of the 4 study
nights [28], which captures times the participant got into bed,
went to sleep, woke up, and got out of bed. We have further
adapted this to capture information on perceived sleep quality
and whether any naps were taken outside of the primary sleep
window (Multimedia Appendix 3).
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Data Processing and Analysis

Physiological reference metrics derived from the ground-truth
clinical-grade cardiac monitor will include participant heart
rate and heart rate variability. There is ongoing work to
develop and validate an ECG algorithm, which will be made
publicly available in the future. During this process, clinical
experts with extensive experience will review ECGs for RR
intervals to determine algorithm performance. Derived heart
rate and variability will be calculated on a per-epoch basis in
10-second windows and will serve as the ground-truth labels
of heart rate for the study. Comparisons will then be made
between these cardiac monitor—derived metrics and PPG-
derived metrics [29] from both wrist-worn devices in terms
of epoch-level accuracy and agreement across participant age,
sex, and BMI subgroups.

Physical activity behaviors derived from the camera will
take the form of video annotation of labeled activities based
on posture (eg, lying, sitting, and standing) and whole-body
movements (eg, walking, running, and cycling), in line with
previous research [30]. Each participant’s camera data will
be annotated by an annotator who has completed a rigor-
ous training regimen and is certified for annotation after
consistently reaching a » agreement of >0.8 against a series
of day-long reference participants. If multiple annotators are
required, we will additionally assess for interrater reliability
scores. Further annotation and assessment will be conducted
against machine learning—based automated image and video
annotations [31]. These annotations will serve as the basis
for retraining machine learning behavior classification models
to better identify periods of sedentary, light, moderate, and
vigorous physical activity [9,32].

Ground-truth sleep metrics, including time of sleep onset,
waking time, and sleep staging, will be scored according
to the AASM 2023 guidelines [25] by a single AASM-
accredited sleep scientist with additional European Sleep
Research Society accreditation and more than 15 years of
experience working with EEG data. Sleep stages (non-rapid
eye movement sleep [stages N1, N2, and N3], rapid eye
movement, and awake) will be assigned for every epoch
(30 seconds). A subsample of recordings (10%-20%) will
be scored by a secondary accredited researcher to assess
interrater reliability. As per recommendations in the field,
scoring will be adjusted until interrater agreement reaches
>80%. Similar to the physical activity behavioral ground-
truth annotations, sleep annotations derived from the in-
home PSG will serve as the basis for comparison of sleep
time, sleep efficiency, and sleep staging derived from other
accelerometers and the under-mattress sleep nearable, in
addition to current accelerometer-based machine learning
sleep models [33,34].

Data quality will be assessed regularly throughout the
data collection period to check protocol adherence. This
will involve processing the raw accelerometer data from the
research-grade wearables through existing analytic software,
such as Biobank AccelerometerAnalysis (University of
Oxford) [8] and Stepcount (University of Oxford) [35],
to assess device recording duration and nonwear detection
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based on accelerometer thresholds. The Fitbit- and With-
ings-derived data will be checked at the summary level
to flag possible poor compliance. PSG data quality will
be assessed within the manufacturers' software using an
automated sleep-stage classification system. We will report
on the technical validation of the data when we publish the
complete dataset, including the number of participants and
the volume of camera-labeled data, both separately and when
combined with concurrent data from other devices.

The primary aim of this study is to collect a high-qual-
ity validation dataset to facilitate new ways of analyzing
time-series wearable data. As such, there will be many
future imaginative analyses of these data that we do not
anticipate at present. At present, we anticipate that mean
precision, recall, Fi-score, Cohen %, and accuracy will be
used to evaluate model performance for all comparisons
with ground-truth labels. Additionally, summary metrics will
be assessed against the ground-truth measure using mean
absolute bias, mean amplitude percentage error, Cohen %
[36], and Bland-Altman plots [37].

Metadata Description

Our complete dataset and metadata will be hosted by
the Oxford University Research Archive under the Crea-
tive Commons “Attribution 4.0 International (CC BY 4.0)”
license. Raw accelerometry, ECG, and PPG data will be
provided as compressed CSV files in folders for each
participant. We will provide separate CSV files containing
a dictionary of annotation labels for scored PSG data, a
full annotation schema, labels for wearable camera data,
and participant characteristics (age category, sex, and BMI

category).

Results

To date, 150 participant information sheets have been sent
to members of the Oxford BioBank database. Of these,
30 (20%) have expressed interest, and 15 (50% of those
expressing interest) have provided consent. Common reasons
for not progressing to consenting so far include ineligibility
due to occupation (teacher or health care worker), requests to
be contacted at a later date, and inability to make contact with
the participant. The first participant consented and completed
data collection in November 2024. As of May 2025, we
had enrolled 15 participants, with 12 (80%) completing the
monitoring period with excellent adherence to the protocol.
Data collection is expected to be completed in 2026.

Discussion

This protocol details the design of a new free-living val-
idation dataset to more accurately characterize physical
behaviors and heart rate using wearable-based sensors on
the wrist, chest, waist, hip, thigh, and ankle. By establishing
ground-truth metrics for physical activity, sedentary behavior,
sleep, and heart rate in a cohort of middle-aged and older
adults, we attempt to create the largest resource for the
validation of current and future methods for deriving physical
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behaviors and heart rate that is freely accessible to the
wider research community. Furthermore, the methods that
we implement in this study overlap with past research [7,
38]; ongoing studies at the University of Oxford (S van
Duijvenboden, unpublished data, December 2025); and future
planned studies in low- and middle-income countries, such
as India, South Africa, and Malaysia. This will foster efforts
to improve the generalizability of machine learning models
by training on diverse datasets, in addition to providing
suitable datasets for external validation and pooled analyses.
Large cohort studies currently hold rich datasets of unlabeled
data. The creation of this curated dataset, comprising labeled
behaviors for all popular sensor wear sites [39], will support
the development of more accurate and novel phenotyping.
The application of these phenotypes into epidemiological
research will then be used to provide novel insights into
human health, with respect to risk prediction, discovery of
target mechanisms, and new methods to prioritize and assess
the impact of potential treatments on day-to-day physical
activity, sedentary behavior, and sleep.

Chest-worn ECGs are increasingly being used in cohort
and clinical trials, where long-term monitoring of ECG
data during free living can provide a more comprehen-
sive understanding of heart function during daily activi-
ties, exercise, and sleep. The validation of ECG data from
chest-worn wearables supports ongoing and future long-term
cardiac monitoring trials such as the UK BioBank cardiac
monitoring substudy [40]. At present, there is promising,
but very limited, evidence on the validity of accelerome-
ter-derived physical behavior phenotypes from chest-worn
accelerometers based on simulated free living in small
samples [41,42]. Incorporating physiological parameters, such
as heart rate and other ECG parameters—key markers of
cardiovascular health—could provide deeper insights into the
intensity and impact of physical activity. For example, several
activities performed at moderate-to-vigorous intensity, such
as cycling, resistance exercises, or walking on an incline,
are assessed with limited certainty with accelerometry [43]
and are likely to be better captured by including heart rate
monitoring, as it is not affected by the modality biases
inherent to single-site accelerometry. Kuo et al [44] dem-
onstrated an increase in reliability of 10% to 15% when
including heart rate on top of accelerometry at 5 different
wear sites to estimate energy expenditure during treadmill
exercise at different speeds and gradients. This study was
limited to a small sample of 16 young, healthy men and a
treadmill protocol. Free-living behaviors captured in a larger,
stratified sample, such as in this study, will further enhance
our understanding of the added value of combining accel-
erometer data with heart rate, as these measures become
increasingly available in research and consumer markets.

Identification of sleep stages that involve minimal
movement may also benefit from additional physiological
metrics to enhance their accuracy and reliability. This has
been demonstrated previously in 31 adults who wore an
Apple watch during a PSG assessment [45]. The combina-
tion of accelerometer with additional PPG sensor did not
improve overall wake-sleep classification. However, sleep
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staging classification accuracy improved by 15% to 25%
when heart rate was added as a feature on top of acceler-
ometry signal alone and showed similar performance when
applied to a large heterogeneous sample of approximately
6800 US adults from the National Sleep Research Resource
[46]. This study will generate the largest accessible free-liv-
ing dataset with ground-truth annotations for model develop-
ment to improve human activity recognition at the chest for
immediate application to clinical trial and prospective cohort
datasets.

Maylor et al

responses. Furthermore, despite recruiting a large sample size
in comparison to existing device validation studies, sub-
group analyses may be challenging when assessing algorithm
performance. However, due to our methodology, it would be
possible for these data to be combined with other datasets
(eg, Capture-24) to increase the statistical power of these
comparisons in the future. Finally, although we recruit a
sample stratified by age, sex, and BMI, our sample does not
include younger adults aged <40 years, those with chronic
illnesses, or non-English speakers. Therefore, the results will

only be applicable to healthy adults with a demographic
profile similar to the recruited participants. Future work
should strive to include representativeness of these character-
istics in addition to improving representativeness from low-
and middle-income countries to assess generalizability of
machine learning algorithms trained on this dataset. Despite
these limitations, we anticipate that the study’s strengths will
make the resulting dataset the largest and most comprehen-
sive open-access validation dataset worldwide.

Strengths of this study include the large, stratified sample
to create a more heterogeneous, multimodal dataset; the
inclusion of ground-truth measures of physical activity,
sedentary behavior, sleep, and heart rate; and the planned
release of the data to the wider research community. One
limitation of this study is the lack of dietary or cognitive
data, meaning certain behaviors cannot be linked to physio-
logical metrics, for example, postmeal sedentariness and heart
rate variability. Future work could explore the capture of
these behaviors to provide additional context to physiological
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