Protocol

Efficacy of a Multimodal Ayurveda Regimen in the Management of Primary Knee Osteoarthritis: Protocol for an Open-Label Randomized Controlled Trial

Amit Kumar Rai¹, MD; Babita Yadav², MD; Uma Kumar³, MD; Bharti Gupta², MD, PhD; Kishore Patel², MD; Shruti Khanduri⁴, MD; Bhagwan S Sharma⁴, MD; Richa Singhal⁵; Bhogavalli Chandrasekhararao⁴, MD; Narayanam Srikanth⁶, MD; Rabinarayan Acharya⁶, MD, PhD

Corresponding Author:

Uma Kumar, MD
Department of Rheumatology
All India Institute of Medical Sciences
Room No 4076, 4th Floor, Teaching Block
New Delhi, 110029
India

Phone: 91 11 26594467

Email: umaakumar@yahoo.co.in

Abstract

Background: Ayurveda recommends a comprehensive therapeutic approach for osteoarthritis management. However, most of the published clinical studies on Ayurveda interventions for osteoarthritis management have addressed selected modalities of Ayurveda treatment rather than the holistic therapeutic regimen.

Objective: This study aimed to assess the efficacy and safety of a multimodal Ayurveda treatment protocol in the long-term management of primary osteoarthritis of the knee compared with standard care.

Methods: The proposed open-label, parallel-group randomized controlled trial was conducted in individuals of any gender aged 40 to 70 years and diagnosed with primary osteoarthritis of the knee as per the American College of Rheumatology criteria. Individuals with grade 4 radiographic changes in the affected knee (based on the Kellgren-Lawrence classification) and with comorbidities were not considered. The study was conducted at the All India Institute of Medical Sciences, New Delhi, India. A total of 150 participants underwent random assignment in a 1:1 ratio to receive either the Ayurveda treatment protocol or conventional standard care for 180 days. The primary outcome was the change in the Western Ontario and McMaster Universities Osteoarthritis Index score from baseline. The secondary outcome measures included the change in the score for pain, stiffness, and physical function from baseline; change in the range of motion of the knee joint; change in the score of the numeric pain rating scale, Pain Disability Index, and 12-item short-form survey questionnaire (to assess health-related quality of life); change in highly sensitive C-reactive protein levels, interleukin-6 levels, magnetic resonance imaging scan findings, and dual-energy X-ray absorptiometry scan findings; and change in the need for rescue analgesic medication from baseline. Safety was evaluated by recording the incidence of adverse events and changes in liver and kidney function tests from baseline.

Results: Recruitment of study participants commenced on October 11, 2022. Currently, all the participants completed the study and the analysis of the study outcomes is ongoing.

Conclusions: This randomized controlled trial will be the first study to explore the potential benefits of a multimodal Ayurveda regimen (based on Ayurveda principles and scientific evidence) in the long-term management of osteoarthritis of the knee through validated subjective, laboratory, and imaging parameters. The outcomes of this study may address the needs and challenges associated with osteoarthritis management.

¹Department of Kayachikitsa, Ayurvedic and Unani Tibbia College and Hospital, New Delhi, India

²Department of Ayurveda, Central Ayurveda Research Institute, New Delhi, India

³Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India

⁴Department of Ayurveda, Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Government of India, New Delhi, India

⁵ICMR-National Institute of Malaria Research, New Delhi, New Delhi, India

⁶Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Government of India, New Delhi, India

Trial Registration: Clinical Trial Registry of India CTRI/2022/05/042792; https://ctri.nic.in/Clinicaltrials/pmaindet2.php?EncHid=Njk0MTM=&Enc=&userName=

International Registered Report Identifier (IRRID): DERR1-10.2196/68306

(JMIR Res Protoc 2025;14:e68306) doi: 10.2196/68306

KEYWORDS

Janu Basti; Laksha Guggulu; Matra Basti; osteoarthritis; WOMAC; Western Ontario and McMaster Universities Osteoarthritis Index

Introduction

Background

Osteoarthritis is a chronic degenerative condition characterized by structural changes in the articular cartilage, ligaments, capsule, synovium, subchondral bone, and periarticular muscles, resulting in joint pain, stiffness, and limited mobility [1]. As per the Osteoarthritis Research Society International, osteoarthritis has all the hallmarks of a serious condition because of associated disability and loss of function [2]. Osteoarthritis most commonly affects the knee, followed by the hand, hip, spine, and shoulder. Osteoarthritis of the knee accounts for approximately 85% of osteoarthritis cases globally [3]. Primary osteoarthritis is caused by age-related degeneration, while osteoarthritis occurs because of injury, occupation-related stress on joints, and comorbid conditions, including diabetes mellitus. Mechanical, inflammatory, and metabolic factors play an important part in the intricate pathophysiology of osteoarthritis, which eventually results in the structural breakdown and collapse of the synovial joint [4]. Global estimates indicate that approximately 595 million individuals worldwide were affected by this burdensome clinical condition in 2020, equivalent to 7.6% of the global population [5]. Osteoarthritis is becoming more prevalent owing to the combined impacts of aging, rising physical inactivity and obesity in the population, and an increased incidence of joint injuries [2]. In 2020, 21.7 million years lived with disability were attributed to osteoarthritis globally [5]. It is one of the 4 leading causes of years lived with disability worldwide [4]. The objectives of osteoarthritis management are to reduce pain intensity and inflammation, slow down cartilage degradation, improve joint movement, and reduce disability. Treatment options include patient education, oral and topical pharmacological agents, interventional procedures (eg, corticosteroid injection and viscosupplementation), bracing, assistive devices, physical therapy, and surgery (eg, arthroscopy, osteotomy, and arthroplasty) [6]. Currently, conventional medicine has no therapeutic options that can arrest or slow down the disease progression in patients with osteoarthritis [2]. In the absence of drugs with proven disease-modifying activity, the current approach is mainly focused on palliative pain management [7]. However, chronic pain management with acetaminophen, nonsteroidal anti-inflammatory drugs, and intermittent intra-articular corticosteroid injections is associated with limited benefits, along with considerable gastrointestinal, renal, and cardiovascular risks [2,8-10]. Furthermore, there is uncertainty regarding the effect of glucosamine and chondroitin supplementation on the structural progression of osteoarthritis

[10]. Meanwhile, arthroplasty is considered only for severe cases of osteoarthritis. Therefore, it is pertinent to search for safe, efficacious, and cost-effective therapeutic options with better tolerability to reduce the disease burden of osteoarthritis.

Sandhigatavata, a specific type of Vatavyadhi (disease conditions because of vitiation of Vata Dosha) in Ayurveda, has a clinical presentation similar to osteoarthritis. Ayurveda suggests a multimodal treatment approach for managing Sandhigatavata, a traditional Ayurvedic condition clinically comparable to osteoarthritis, including a judicious combination of Panchkarma (Ayurveda therapeutic procedures), oral medications, nutritional supplements, a nutritious diet, and a recommended lifestyle. Several published clinical studies have highlighted the safety and beneficial effects of Ayurveda interventions in the management of osteoarthritis [11-23]. One randomized controlled trial (RCT) concluded that the Ayurveda treatment protocol led to significant and clinically relevant improvement in osteoarthritis-related clinical features compared with conventional care, with most effects maintained over 12 months [11,12]. Another clinical study, supported by the World Health Organization to evaluate the feasibility of operational integration of Ayurveda treatment with conventional medicine in the management of osteoarthritis of the knee at a tertiary care hospital, also reported that the Ayurveda treatment regimen showed promising outcomes in the management of osteoarthritis of the knee, including symptom reduction, improved quality of life, and reduced need for conventional analgesics [13]. A systematic review also highlighted the safety and preliminary evidence regarding the effectiveness of various Ayurveda interventions in the management of osteoarthritis [24]. In addition, Ayurveda interventions, such as Shallaki (Boswellia serrata Roxb.), Guggulu (Commiphora mukul Engl.), Ashwagandha (Withania somnifera [L.] Dunal), Shunthi (Zingiber officinale Roscoe), Bala (Sida cordifolia L.), Nirgundi (Vitex negundo L.), and Dashmula (a combination of the dried root of 10 specific medicinal plants) have shown potential anti-inflammatory, analgesic, antiosteoporotic, and antioxidant activities [25-33].

However, most of the aforementioned published studies have addressed selected modalities of Ayurveda treatment rather than a holistic Ayurveda therapeutic regimen. Therefore, it is necessary to conduct RCTs with a multimodal Ayurveda regimen for the management of osteoarthritis. Considering this limitation, the present RCT was conceptualized to assess the efficacy and safety of an Ayurveda treatment regimen (consisting of therapeutic procedures and oral medications) to manage primary osteoarthritis of the knee. The therapeutic regimen proposed for the study is based on preliminary leads

from exploratory clinical studies on individual Ayurveda interventions that have shown promising outcomes in the management of osteoarthritis [15,17,18].

Objectives

The present RCT was designed to assess the efficacy of multimodal Ayurveda interventions in managing pain and functional disability in patients with primary osteoarthritis of the knee compared with standard care. The key secondary objectives of this study included evaluating the efficacy of the trial Ayurveda interventions on range of motion of the knee joint, the need for rescue analgesic medication, quality of life parameters, knee structural changes (ie, delay in the structural progression of osteoarthritis), proinflammatory biomarkers, and bone mineral density after 180 days. Another secondary objective was to assess the safety of multimodal Ayurveda interventions in managing osteoarthritis of the knee.

Methods

The study protocol has been drafted following the SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) guidelines [34].

Study Design and Setting

This clinical study was an open-label, randomized, controlled, parallel-group, noninferiority trial. The study was conducted at the All India Institute of Medical Sciences (AIIMS), New Delhi, India.

Study Participants

Individuals of any gender aged 40 to 70 years who were diagnosed with primary osteoarthritis of the knee as per the American College of Rheumatology (ACR) criteria; had a pain score of at least 2 (as per the numeric pain rating scale) on most days in the last month; met ACR functional status criteria class I, II, and III; have a serum vitamin D level >30 ng/mL; and were

willing to provide written informed consent were included in the study. The ACR criteria for osteoarthritis of the knee include knee pain along with any 3 of the following: aged >50 years, joint stiffness lasting less than 30 minutes, crepitus, bony tenderness, bony enlargement, and absence of palpable warmth.

Individuals were excluded if they had grade 4 radiographic changes in the affected knee joint (as per the Kellgren-Lawrence classification); had a history of significant trauma to the knee (including arthroscopy within the preceding year), knee joint replacement, intra-articular corticosteroid or hyaluronic acid administration within 1 month before the study; were currently taking corticosteroids; or had a history of rheumatoid arthritis, psoriatic arthritis, systemic lupus erythematosus, cardiovascular disease, or malignancy. Individuals were also excluded if they had uncontrolled diabetes mellitus (ie, hemoglobin $A_{1c} > 8\%$), uncontrolled hypertension (ie, blood pressure >160/100 mm Hg despite medication), abnormal hepatic function (ie, aspartate aminotransferase or alanine aminotransferase >2 times the upper limit of normal), or abnormal renal function (ie, serum creatinine >1.2 mg/dL); a tendency for occurrence of recurrent renal calculi; or a BMI ≥32 kg/m². Similarly, those with any contraindication for magnetic resonance imaging (MRI), a history of hypersensitivity to the study interventions, a history of chain smoking, alcohol use disorder, substance abuse, or any other clinical condition that the investigator believed may compromise the participant's safety, compliance, or evaluation were not considered for the study.

Study Intervention

Eligible participants in the Ayurveda group received a comprehensive Ayurveda treatment protocol, which included *Matra Basti* with *Ksheerabala Taila* and *Janu Basti* with *Dhanwantara Taila*, along with oral medications—*Laksha Guggulu* and *Muktashukti Bhasma*—for 180 days. The details of the study interventions are provided in Table 1.

Table 1. Details of the study interventions.

Intervention (with reference)	Route of administration	Dosage and frequency	Anupana (vehicle of administration)	Duration
Ksheerabala Taila (API ^a part II, vol I [35])	Rectal (Matra Basti)	60 mL once daily after food	b	14 d every 2 mo for 180 d
Dhanwantara Taila (API part II, vol I [35])	Local application over the affected knee (Janu Basti)	QS ^c once daily	_	14 d every 2 mo for 180 d
Laksha Guggulu (API part II, vol II [36])	Oral	1 g twice daily after food	Lukewarm water	180 d
Muktashukti Bhasma (Pharmacopeial Standards for Ayurvedic Formulations [37])	Oral	250 mg twice daily after food	Lukewarm water	180 d

^aAPI: Ayurvedic Pharmacopoeia of India.

The methodology of the therapeutic procedures, *Matra Basti* and *Janu Basti*, is provided in Multimedia Appendix 1. The participants in the control group will receive standard care (ie, topical application of diclofenac sodium gel twice daily) for

180 days, as recommended in the standard treatment guidelines for the management of osteoarthritis of the knee, issued by the Ministry of Health and Family Welfare, Government of India.

^bNot applicable.

^cQS: quantity sufficient.

Ayurveda practitioners on the research team dispensed the Ayurveda interventions at the study sites throughout the trial period. Furthermore, paramedical staff trained in *Panchakarma* administered *Matra Basti* and *Janu Basti* to the study participants in the Ayurveda group. The participants were examined every 30 days during the study period. The trial Ayurveda interventions were procured from the Indian Medicines Pharmaceutical Corporation Limited, Ministry of Ayush, Government of India.

Discontinuation of the Study Interventions

The study interventions are not causally associated with serious adverse effects or adverse drug reactions (ADRs), as reported in previously published studies. However, if appropriate measures are not followed while administering *Janu Basti*, adverse effects, such as mild irritation or skin rashes, may occur at the application site. Similarly, bloating, increased bowel movements, and abdominal pain may develop if *Matra Basti* is not administered correctly. *Laksha Guggulu* may lead to abdominal discomfort, nausea, belching, and skin rashes if not taken as per the physician's instructions and recommended dose.

If any participant developed any adverse effects, administration of the study interventions was temporarily discontinued, and the participant was closely monitored. If symptoms recurred after reintroducing the study interventions, the participant was withdrawn and provided with appropriate medical care as needed.

If any participant developed a serious adverse event (AE) or treatment-emergent AE during the study period, the participant was withdrawn from the study and provided with appropriate incidental care at the study site (ie, the AIIMS, a tertiary care medical institution). In addition, all the study participants were covered by clinical trial insurance during their participation for medical expenses related to the management of any study-related AEs. Furthermore, the sponsor and the ethics committee were notified within 2 working days using the AE and ADRs reporting format, along with appropriate justification. Causality assessment of all AEs, serious AEs, and ADRs occurred during the study was also conducted.

Compliance With Trial Interventions During the Study

All participants in the Ayurveda group were provided with an information leaflet containing instructions for the use (dose, frequency, and time of administration) and storage of the study interventions. The participants were also issued a compliance form during the baseline and subsequent follow-up visits to self-report their consistent or irregular use of the trial interventions and to record any missed doses with remarks for missing, which enabled assessment of adherence to the dosing pattern as per the study protocol. During each follow-up visit, participants were asked to return the used, unused, or partially used containers of the study interventions to the investigators to assess adherence and cross-check with the participant's self-reported compliance form.

Participants who did not adhere to the study protocol, did not have ≥80% compliance, developed any study-related AEs resulting in withdrawal from the study at their preference, or withdrew their voluntary consent for participation in the study

were withdrawn from the study. If participants consented to data collection during the scheduled follow-ups or at the end of the 180-day period, the data were collected and recorded in the case record form (CRF). The data from completed assessments available up to the point of withdrawal will be used for analysis.

Concomitant or Rescue Medication

The investigators monitored the participants for any concomitant or rescue medication required during the study period. In the event of any AEs or an increase in pain intensity, rescue medication was permitted at the investigators' discretion. All instances of concomitant care were carefully documented in the CRF.

Outcome Measures

The primary outcome was the change in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score from baseline. The secondary outcome measures included the change in the score for pain, stiffness, and physical function from baseline (assessed using the WOMAC scale); the change in range of motion of the knee joint (assessed using a goniometer); the change in the scores of the numeric pain rating scale, Pain Disability Index, and 12-item short-form survey questionnaire (to assess health-related quality of life); the change in high-sensitivity C-reactive protein and interleukin-6 levels, MRI findings (to assess knee structural changes), and dual-energy x-ray absorptiometry scan findings (to assess change in bone mineral density); and the change in the need for rescue analgesic medication.

The outcomes were evaluated every 30 days until day 180 from baseline. Laboratory investigations were conducted at baseline and on day 180.

Safety Assessment

The safety of the trial interventions was determined by recording the incidence of AEs, if any, during scheduled follow-up visits using a structured format. All AEs during the study were recorded and monitored in accordance with the International Council for Harmonisation–Good Clinical Practice (GCP) guidelines. Safety was also evaluated by performing liver function tests (LFTs) and kidney function tests (KFTs) on days 90 and 180 from baseline.

Sample Size

On the basis of the results from a previous study [11], in which the difference in WOMAC score between the Ayurveda and conventional group after 12 weeks of treatment was 24 points, this study has been designed to have 80% statistical power to detect a difference of at least a 20-point improvement (change from baseline) in the WOMAC score after treatment between the 2 groups (pooled SD 42; 2-sided t test, α =.05). To achieve this, 69 participants per group were required. Accounting for an expected attrition rate of 10%, the final sample size for each group was determined to be 75 participants (150 in total).

Recruitment of Study Participants

During the study, the investigators screened individuals with clinical features of osteoarthritis of the knee who visited the

outpatient department of the study sites, based on the defined inclusion and exclusion criteria, to identify and recruit potential individuals. The research personnel allocated the eligible participants to either of the 2 groups based on a

computer-generated randomization schedule (Figure 1). The screening process was continued until the target sample size for the study was achieved.

Figure 1. The study schedule. BMD: bone mineral density; BP: blood pressure; CBC: complete blood count; CRF: case record form; DEXA: dual-energy x-ray absorptiometry; ECG: electrocardiogram; ESR: erythrocyte sedimentation rate; HbA1c: hemoglobin A1c; hs-CRP: high-sensitivity C-reactive protein; IL-6: interleukin 6; KFT: kidney function test; LFT: liver function test; MRI: magnetic resonance imaging; RA: rheumatoid arthritis; SF-12: 12-item short-form survey; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index.

Randomization

The eligible individuals were randomly assigned to the Ayurveda group or the control group with a 1:1 allocation. SPSS software (version 15.0; IBM Corp) was used to generate the random number sequences. The randomization sequence was generated by an independent statistician who was not involved in participants' enrollment and assessment.

Allocation Concealment

Sequentially numbered, opaque, sealed envelopes were used to ensure allocation concealment. The participant's enrollment number was printed on the top of the envelope, and a slip indicating the participant's allocated group was placed inside. After completing all baseline assessments, the research staff provided the sealed envelope to the eligible individuals. The individual opened the envelope and was then allocated to a group as indicated on the slip inside. The opened envelope and the printed slip were attached to the participant's CRF for documentation and trial monitoring.

Data Collection

The baseline demographics, clinical, and physical examination data were collected by qualified Ayurveda study personnel and recorded in a CRF designed for this purpose. The subjective and objective outcome assessments were conducted according to the study protocol. Knee pain, stiffness, and functional disability were assessed using the WOMAC score [38]. The self-reported severity of pain was recorded using a numeric pain rating scale and Pain Disability Index [39,40]. The overall quality of life was assessed using a validated scale, the 12-item

short-form survey questionnaire [41]. These outcomes were assessed at baseline and during follow-up visits on days 30, 60, 90, 120, 150, and 180.

Serum samples for the objective assessment parameters, such as proinflammatory biomarkers, LFT, and KFT, were collected at baseline and on day 180 (LFT and KFT were also assessed on day 90), and transported to the NABL-accredited laboratory, along with data from MRI and dual-energy X-ray absorptiometry scans. The data received from the laboratory were entered in the CRF and e-CRF. The research team underwent training on the study protocol and standard operating procedures for the study conduct, storage and dispensing of study interventions, handling of biological samples, data collection, and data recording to ensure compliance with GCP principles, while ensuring participant safety, data accuracy, and reliability.

Data Management

Data management in this clinical study adhered to stringent guidelines to ensure the accuracy, reliability, and integrity of the collected information. Upon the participant's assessment, the research team promptly entered the data into CRFs and e-CRFs. Source documents and CRFs were securely stored in restricted-access areas, limited solely to the study team. Electronic CRFs were password-protected and stored in secure, access-restricted computer systems.

The data entered by the study personnel underwent meticulous cross-verification by the study investigators at the study site, ensuring the reliability of the data. Rigorous quality measures were implemented, such as regular audits, to identify and address any discrepancies in the data. Data management practices

adhered to regulatory guidelines and ethical principles, prioritizing the protection of participant rights.

Statistical Methods

Categorical data will be presented as numbers (percentages) and compared between groups using the chi-square test. Continuous data following normal distributions will be reported as mean (SD), and between-group comparisons will be performed using the independent sample t test. Within-group comparisons for normally distributed data will be conducted using the paired sample t test or repeated measures ANOVA. Nonnormally distributed data will be reported as median (first and third quartiles), and between-group comparisons will be performed using the Mann-Whitney U test. Within-group comparisons will be conducted using the Wilcoxon signed rank test or the Friedman test. A P value <.05 will be considered statistically significant. SPSS software (version 29.0; IBM Corp) will be used for statistical analysis.

The modified intention-to-treat analysis approach will be applied to handle missing data. Missing data for all participants with available data from at least 1 visit after baseline (day 30) will be imputed. The last observation carried forward method will be used to impute the missing values.

Monitoring

The data and safety monitoring board monitored the study for quality and regulatory compliance. The data and safety monitoring board reviewed the progress of the study every 6 months until the end of the study period.

Trial Audit

An on-site monitoring visit by an independent committee constituted by the sponsor was planned to ensure that the study procedures and data collection processes complied with existing regulatory standards and to check the accuracy, completeness, legibility, and timeliness of the reported study data.

Ethical Considerations

The institutional ethics committee of AIIMS, New Delhi, has approved the study protocol (IEC-132/04.02.2022) and related documents to ensure compliance with ethical standards and safeguard the rights and well-being of the participants. The study has been registered prospectively at the Clinical Trial Registry of India (CTRI/2022/05/042792). The study was undertaken in accordance with the principles of the Declaration of Helsinki, the Indian Council of Medical Research's National Ethical Guidelines for Biomedical and Health Research on Human Participants (2017), and the International Council for Harmonisation GCP guidelines. All substantial amendments to the study protocol affecting participant safety or study integrity were submitted to the institutional ethics committee for approval before implementation. Before undergoing any study-related procedure, potential participants received a participant information sheet in Hindi or their native language. The participant information sheet comprehensively outlined the various aspects of the study, equipping the participants with the necessary information to make an informed decision regarding participation in the study. Written informed consent was

obtained using the consent form, signed by the participant and the study personnel delegated to the task.

All relevant study data were securely stored at the study site in password-protected access systems located in areas with limited access. To maintain participant confidentiality, a coded enrollment identification number was used to identify all laboratory specimens, reports, data collection, and relevant forms. All records containing names or other personal identifiers, such as informed consent forms, were stored separately from the study records, which were identified by code identification numbers, in a restricted-access area.

Ancillary and Posttrial Care

No ancillary studies are proposed in the present clinical study. If required, the participants were provided with routine medical care after completing the study.

Results

The recruitment of study participants was initiated on October 11, 2022. The recruitment of study participants has been completed. The analysis of the study data is in progress.

Discussion

Anticipated Findings

Osteoarthritis, owing to its chronic nature, is associated with considerable disease burden, functional disability, and health care costs globally. Because of inadequate relief and adverse effects associated with conventional medications, a substantial proportion of individuals affected by osteoarthritis prefer traditional medicine systems, such as Ayurveda, for sustained long-term relief without treatment-related safety concerns. Ayurveda adopts a comprehensive treatment approach combining various therapeutic options, such as Abhyanga (massage), Swedana (hot fomentation), Mridu Samshodhana (mild purgation), Basti (medicated Janu-Kati-Greeva-Pristhta Basti (localized oleation therapy), Upanaha (poultice application), Vatashamaka (pacifying vitiated Vata Dosha), and Rasayana (Ayurveda nutritional supplements), along with a nutritious diet and a balanced lifestyle, for the effective management of osteoarthritis depending on the stage of the disease. Numerous clinical studies have been conducted to evaluate the efficacy of various Ayurvedic interventions for managing osteoarthritis. Most of these studies have focused on single herbs, compound formulations, or individual therapeutic procedures. Only a few studies have investigated multimodal therapeutic regimens grounded in Ayurveda principles and practiced in routine Ayurvedic care.

The present RCT was conceived to evaluate the efficacy of an Ayurveda treatment regimen comprising *Panchkarma* procedures (*Matra Basti* and *Janu Basti*) along with oral medications—*Laksha Guggulu* and *Muktashukti Bhasma*—for the management of primary osteoarthritis of the knee. *Matra Basti* (therapeutic enema with medicated oil) using *Ksheerabala Taila* is planned for this study, as *Basti* is considered the prime treatment modality for *Vatavyadhi* (musculoskeletal, neuromuscular, and degenerative disorders) [42]. Furthermore,

it is well-established that drug administration via the rectal route can achieve significantly higher blood levels of the medication compared with the oral route, as the rectum has a rich blood and lymph supply; thus, lipid-soluble drugs can cross the rectal mucosa, be readily absorbed, and enter the systemic circulation [17,43]. Thus, the administration of drugs in the Basti form may result in faster absorption and quicker results. Bala, the principal constituent of Ksheerabala Taila, possesses anti-inflammatory, analgesic, and antioxidant properties [44-46]. In addition, published clinical studies on Matra Basti in osteoarthritis have shown promising outcomes [15,17]. Similar results were also reported in an exploratory clinical study on Basti with Ksheerabala Taila in patients with osteoarthritis of the knee [21]. Janu Basti (medicated oil retention over the knee) is a localized Ayurveda procedure used for knee joint-related ailments. During the procedure, warm medicated oil is applied to the knee joint, allowing it to be absorbed into the joint tissues, thereby providing lubrication and improving joint mobility by enhancing blood circulation and promoting muscle relaxation in the knee area. It also alleviates pain and inflammation through the anti-inflammatory and analgesic properties of the ingredients of the medicated oil. Published clinical studies and case reports have reported the potential benefits of Janu Basti in providing relief for osteoarthritis-related outcome parameters [47-49]. Furthermore, in this study, *Dhanwantara Taila* is proposed for Janu Basti, which has significantly relieved osteoarthritis-related complaints and improved the quality of life and WOMAC score in previous research studies [20]. In addition, the major ingredients of Dhanwantara Taila, namely, Bala and Dashamula, possess analgesic and anti-inflammatory properties [33,44-46]. An experimental study also reported the anti-inflammatory and analgesic activities of Dhanwantara *Taila* [50].

The ingredients of Laksha Guggulu possess anti-inflammatory, analgesic, antiarthritic, chondroprotective, and antioxidant activities, and therefore are likely to ameliorate disease progression in patients with osteoarthritis [27,28,51-54]. In addition, an experimental study highlighted the antiarthritic and chondroprotective potential of Laksha Guggulu [55]. Exploratory studies on Laksha Guggulu have provided preliminary evidence of its efficacy in osteoarthritis of the knee and osteoporosis [18,56,57]. Muktashukti Bhasma is a natural calcium-containing Ayurveda formulation used in degenerative conditions of bones and joints to nourish these tissues. A published standardization study reported it as nano-range calcium carbonate in calcite form [58]. The study also highlighted it as a good source of elemental calcium, as observed in energy-dispersive X-ray analysis [58]. Furthermore, a preclinical study on albino rats reported its anti-inflammatory activity [59]. A published clinical study on Muktashukti Bhasma showed significant improvement in outcome parameters for osteopenia and osteoporosis [57].

Therefore, preliminary evidence suggests that the Ayurveda interventions included in the proposed therapeutic regimen have the potential to reduce the severity of pain and functional disability associated with osteoarthritis. Furthermore, the herbal ingredients of these interventions possess anti-inflammatory, analgesic, antiosteoporotic, antiarthritic, chondroprotective, and antioxidant activities. Therefore, these interventions may alleviate the pathophysiology of osteoarthritis by exerting favorable effects on proinflammatory markers and slowing down the degenerative process.

A well-planned Ayurveda therapeutic regimen grounded in Ayurveda principles and supported by scientific evidence that addresses the needs and challenges of osteoarthritis management and promotes holistic care may significantly improve long-term management. The comprehensive Ayurveda regimen designed for this study has the potential to offer valuable insights into effective therapeutic options for the management of osteoarthritis.

The present RCT protocol has several key strengths. First, it uses a complex Ayurveda regimen that incorporates therapeutic procedures and internal medications, which are easy to administer, well-tolerated, and safe, with the potential to address osteoarthritis-related pathological changes. Second, the study includes an adequate sample size and validated subjective assessment tools, along with imaging and relevant biomarkers as outcomes to address various parameters related to the pathogenesis of osteoarthritis.

Limitations

This protocol also has a few limitations, including the open-label design of the study. However, to minimize potential bias in assessing the outcomes, the research staff assigned to assess the study outcomes were blinded to the allocation of participants to the study groups. Furthermore, to mitigate the risk of selective reporting of trial results, the statistician who will analyze the study data will also be blinded to the allocation of participants to the study groups.

Conclusions

The outcomes of the present RCT are expected to generate robust evidence regarding the efficacy and safety of a complex Ayurveda therapeutic regimen in the long-term management of osteoarthritis of the knee, compared with standard conventional care based on validated subjective, laboratory, and imaging parameters. The results and findings will be disseminated following the best practices in scientific publishing, ensuring that the knowledge generated will benefit the scientific community and the public through publications in peer-reviewed, indexed medical journals and presentations at national and international conferences.

Acknowledgments

The Central Council for Research in Ayurvedic Sciences, Ministry of Ayush, Government of India, is funding the study. The funding agency also provided technical support in conceptualizing and designing the study and will have a role in data collection, management, analysis, and interpretation of data; writing of the clinical study report; and the decision to submit the final clinical study report for publication in an indexed medical journal.

All authors declared that they had insufficient or no funding to support open access publication of this manuscript, including from affiliated organizations or institutions, funding agencies, or other organizations. JMIR Publications provided article processing fee (APF) support for the publication of this article.

Data Availability

The datasets generated or analyzed during this study will be available from the corresponding author on reasonable request.

Authors' Contributions

AKR was responsible for conceptualization, methodology, and writing the original draft. BY contributed to conceptualization, methodology, and project administration. UK was involved in conceptualization, investigation, project administration, and writing—review and editing. BG contributed resources and supported project administration. KP was responsible for investigation, resources, and project administration. SK and BSS contributed resources. RS provided input on statistical methods. BCR contributed to conceptualization, methodology, supervision, and writing—review and editing. NS was responsible for conceptualization, funding acquisition, supervision, and writing—review and editing. RNA contributed resources, supervision, and writing—review and editing.

Conflicts of Interest

None declared.

Multimedia Appendix 1

Methodology of the therapeutic procedures (Matra Basti and Janu Basti). [DOCX File , 18 KB-Multimedia Appendix 1]

References

- 1. Brandt KD, Radin EL, Dieppe PA, van de Putte L. Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis. Oct 28, 2006;65(10):1261-1264. [FREE Full text] [doi: 10.1136/ard.2006.058347] [Medline: 16973787]
- 2. Osteoarthritis: a serious disease. Osteoarthritis Research Society International. 2016. URL: https://oarsi.org/sites/oarsi/files/docs/2016/oarsi white paper oa serious disease 121416 1.pdf [accessed 2024-07-04]
- 3. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. Oct 08, 2016;388(10053):1545-1602. [FREE Full text] [doi: 10.1016/S0140-6736(16)31678-6] [Medline: 27733282]
- Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. Apr 27, 2019;393(10182):1745-1759. [doi: 10.1016/S0140-6736(19)30417-9] [Medline: 31034380]
- 5. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. Sep 2023;5(9):e508-e522. [FREE Full text] [doi: 10.1016/S2665-9913(23)00163-7] [Medline: 37675071]
- 6. Onishi K, Utturkar A, Chang E, Panush R, Hata J, Perret-Karimi D. Osteoarthritis: a critical review. Crit Rev Phys Rehabil Med. 2012;24(3-4):251-264. [doi: 10.1615/critrevphysrehabilmed.2013007630]
- 7. Hawker GA. Osteoarthritis is a serious disease. Clin Exp Rheumatol. 2019;37 Suppl 120(5):3-6. [FREE Full text] [Medline: 31621562]
- 8. Lim WB, Al-Dadah O. Conservative treatment of knee osteoarthritis: a review of the literature. World J Orthop. Mar 18, 2022;13(3):212-229. [FREE Full text] [doi: 10.5312/wjo.v13.i3.212] [Medline: 35317254]
- 9. Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthritis Cartilage. Mar 2020;28(3):242-248. [FREE Full text] [doi: 10.1016/j.joca.2020.01.002] [Medline: 31945457]
- 10. Yu SP, Hunter DJ. Managing osteoarthritis. Aust Prescr. Aug 01, 2015;38(4):115-119. [FREE Full text] [doi: 10.18773/austprescr.2015.039] [Medline: 26648637]
- 11. Kessler CS, Dhiman KS, Kumar A, Ostermann T, Gupta S, Morandi A, et al. Effectiveness of an Ayurveda treatment approach in knee osteoarthritis a randomized controlled trial. Osteoarthritis Cartilage. May 2018;26(5):620-630. [FREE Full text] [doi: 10.1016/j.joca.2018.01.022] [Medline: 29426006]
- 12. Kessler CS, Jeitler M, Dhiman KS, Kumar A, Ostermann T, Gupta S, et al. Ayurveda in knee osteoarthritis-secondary analyses of a randomized controlled trial. J Clin Med. May 28, 2022;11(11):3047. [FREE Full text] [doi: 10.3390/jcm11113047] [Medline: 35683435]
- 13. Bhat S, Gupta V, Srikanth N, Padhi MM, Rana RK, Singhal R, et al. Approaches for integrating Ayurveda with conventional system in a multispecialty hospital for management of osteoarthritis (knee). J Res Ayurvedic Sci. 2017;1(1):40-47. [doi: 10.5005/jp-journals-10064-0006]

- 14. Akhtar B, Mahto RR, Dave AR, Shukla VD. Clinical study on Sandhigata Vata w.s.r. to osteoarthritis and its management by panchatikta ghrita guggulu. Ayu. Jan 2010;31(1):53-57. [FREE Full text] [doi: 10.4103/0974-8520.68210] [Medline: 22131685]
- 15. Sharma MR, Mehta CS, Shukla DJ, Patel KV, Patel MV, Gupta SN. Multimodal Ayurvedic management for Sandhigatavata (osteoarthritis of knee joints). Ayu. Jan 2013;34(1):49-55. [FREE Full text] [doi: 10.4103/0974-8520.115447] [Medline: 24049405]
- 16. Nipanikar SU, Saluja M, Kuber VV, Kadbhane KP, Chopra A, Khade NR. An open label, prospective, clinical study on a polyherbal formulation in osteoarthritis of knee. J Ayurveda Integr Med. Jan 2013;4(1):33-39. [FREE Full text] [doi: 10.4103/0975-9476.109549] [Medline: 23741160]
- 17. Shah MR, Mehta CS, Shukla VD, Dave AR, Bhatt NN. A clinical study of Matra Vasti and an ayurvedic indigenous compound drug in the management of Sandhigatavata (osteoarthritis). Ayu. Apr 2010;31(2):210-217. [FREE Full text] [doi: 10.4103/0974-8520.72399] [Medline: 22131712]
- 18. Rajoria K, Singh SK, Sharma RS, Sharma SN. Clinical study on laksha guggulu, snehana, swedana and traction in osteoarthritis (knee joint). Ayu. Jan 2010;31(1):80-87. [FREE Full text] [doi: 10.4103/0974-8520.68192] [Medline: 22131690]
- 19. Sharma A, Dudhamal T, Gupta S, Mahanta V. Clinical study of agnikarma and panchatikta guggulu in the management of sandhivata (osteoartheritis of knee joint). AYU. 2016;37(1):38-44. [doi: 10.4103/ayu.ayu 103 14]
- 20. Makhija D, Baruah D, Gupta B, Radhakrishnan P, Baruah D, Deep V, et al. Clinical evaluation of yogaraj guggulu, gandharvahasta taila, and dhanwantara taila in the management of osteoarthritis knees. J Res Ayurvedic Sci. 2018;2(4):209-216. [FREE Full text] [doi: 10.5005/jp-journals-10064-0060]
- 21. Grampurohit PL, Rao N, Harti SS. Effect of anuvasana basti with ksheerabala taila in sandhigata vata (osteoarthritis). Ayu. Apr 2014;35(2):148-151. [FREE Full text] [doi: 10.4103/0974-8520.146225] [Medline: 25558159]
- 22. Das B, Padhi MM, Singh OP, Deep VC, Tewari NS, Panda N. Clinical evaluation of nirgundi taila in the management of sandhivata. Anc Sci Life. Jul 2003;23(1):22-34. [FREE Full text] [Medline: 22557109]
- 23. Nipanikar SU, Deshpande S, Bhosale AH, Jadhav-Shinde MV. A clinical study to evaluate efficacy and safety of AHPL/AYTAB/0313 tablet in subjects suffering from osteoarthritis of knee(s). J Family Med Prim Care. Jan 2020;9(1):61-68. [FREE Full text] [doi: 10.4103/jfmpc.jfmpc_321_18] [Medline: 32110566]
- 24. Kessler CS, Pinders L, Michalsen A, Cramer H. Ayurvedic interventions for osteoarthritis: a systematic review and meta-analysis. Rheumatol Int. Feb 26, 2015;35(2):211-232. [doi: 10.1007/s00296-014-3095-y] [Medline: 25062981]
- 25. Siddiqui MZ. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci. May 2011;73(3):255-261. [FREE Full text] [doi: 10.4103/0250-474X.93507] [Medline: 22457547]
- 26. Gupta PK, Samarakoon SM, Chandola HM, Ravishankar B. Clinical evaluation of Boswellia serrata (Shallaki) resin in the management of Sandhivata (osteoarthritis). Ayu. Oct 2011;32(4):478-482. [FREE Full text] [doi: 10.4103/0974-8520.96119] [Medline: 22661840]
- 27. Sarup P, Bala S, Kamboj S. Pharmacology and phytochemistry of oleo-gum resin of commiphora wightii (Guggulu). Scientifica (Cairo). 2015;2015:138039. [FREE Full text] [doi: 10.1155/2015/138039] [Medline: 26587309]
- 28. Khan MA, Ahmed RS, Chandra N, Arora VK, Ali A. In vivo, extract from withania somnifera root ameliorates arthritis via regulation of key immune mediators of inflammation in experimental model of arthritis. Antiinflamm Antiallergy Agents Med Chem. Feb 06, 2019;18(1):55-70. [FREE Full text] [doi: 10.2174/1871523017666181116092934] [Medline: 30444203]
- 29. Mukherjee PK, Banerjee S, Biswas S, Das B, Kar A, Katiyar CK. Withania somnifera (L.) Dunal modern perspectives of an ancient Rasayana from Ayurveda. J Ethnopharmacol. Jan 10, 2021;264:113157. [doi: 10.1016/j.jep.2020.113157] [Medline: 32783987]
- 30. Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, et al. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. May 30, 2019;8(6):185. [FREE Full text] [doi: 10.3390/foods8060185] [Medline: 31151279]
- 31. Franzotti EM, Santos CV, Rodrigues HM, Mourão RH, Andrade MR, Antoniolli AR. Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J Ethnopharmacol. Sep 2000;72(1-2):273-277. [doi: 10.1016/s0378-8741(00)00205-1] [Medline: 10967481]
- 32. Zheng CJ, Zhang XW, Han T, Jiang YP, Tang JY, Brömme D, et al. Anti-inflammatory and anti-osteoporotic lignans from Vitex negundo seeds. Fitoterapia. Mar 2014;93:31-38. [doi: 10.1016/j.fitote.2013.12.006] [Medline: 24369311]
- 33. Parekar RR, Bolegave SS, Marathe PA, Rege NN. Experimental evaluation of analgesic, anti-inflammatory and anti-platelet potential of Dashamoola. J Ayurveda Integr Med. 2015;6(1):11-18. [doi: 10.4103/0975-9476.146565] [Medline: 25878458]
- 34. Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. Jan 08, 2013;346(jan08 15):e7586. [FREE Full text] [doi: 10.1136/bmj.e7586] [Medline: 23303884]
- 35. The Ayurvedic pharmacopoeia of India Part II Volume I. Government of India. URL: https://naturalingredient.org/wp/wp-content/uploads/API-II-Vol-1.pdf [accessed 2025-08-21]
- 36. The Ayurvedic pharmacopoeia of India Part II Volume II. Government of India. URL: https://naturalingredient.org/wp/wp-content/uploads/API-II-Vol-2.pdf [accessed 2025-08-21]

- 37. Central Council for Research in Ayurveda and Siddha (India). Pharmacopoeial Standards for Ayurvedic Formulations. New Dehli, India. Central Council for Research in Ayurveda and Siddha; 1987.
- 38. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. Dec 1988;15(12):1833-1840. [Medline: 3068365]
- 39. Hawker GA, Mian S, Kendzerska T, French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken). Nov 2011;63 Suppl 11:S240-S252. [FREE Full text] [doi: 10.1002/acr.20543] [Medline: 22588748]
- 40. Tait RC, Pollard CA, Margolis RB, Duckro PN, Krause SJ. The Pain Disability Index: psychometric and validity data. Arch Phys Med Rehabil. Jul 1987;68(7):438-441. [Medline: 3606368]
- 41. Shou J, Ren L, Wang H, Yan F, Cao X, Wang H, et al. Reliability and validity of 12-item Short-Form health survey (SF-12) for the health status of Chinese community elderly population in Xujiahui district of Shanghai. Aging Clin Exp Res. Apr 2016;28(2):339-346. [doi: 10.1007/s40520-015-0401-9] [Medline: 26142623]
- 42. Mangalasseri P. Vatavyadhi chikitsa adhyaya. In: Ojha SN, Deole YS, Basisht G, editors. Charak Samhita New Edition. Jamnagar, India. CSRTSDC; 2020.
- 43. Khagram R, Mehta CS, Shukla VD, Dave AR. Clinical effect of matra basti and vatari guggulu in the management of amavata (rheumatoid arthritis). Ayu. Jul 2010;31(3):343-350. [FREE Full text] [doi: 10.4103/0974-8520.77167] [Medline: 22131737]
- 44. Kanth VR, Diwan PV. Analgesic, antiinflammatory and hypoglycaemic activities of Sida cordifolia. Phytother Res. Feb 1999;13(1):75-77. [doi: 10.1002/(SICI)1099-1573(199902)13:1<75::AID-PTR387>3.0.CO;2-F] [Medline: 10189958]
- 45. Sutradhar RK, Rahman M, Ahmad MU, Datta BK, Bachar SC, Saha A. Analgesic and antiinflammatory activities of Sida cordifolia Linn. Indian J Pharmacol. 2006;38(3):207-208. [doi: 10.4103/0253-7613.25812]
- 46. Momin MA, Bellah SF, Rahman SM, Rahman AA, Murshid GM, Emran TB. Phytopharmacological evaluation of ethanol extract of Sida cordifolia L. roots. Asian Pac J Trop Biomed. Jan 2014;4(1):18-24. [doi: 10.1016/s2221-1691(14)60202-1]
- 47. Singh SK, Rajoria K, Kumar A. A comparative clinical study of Janu Basti (medicated oil retention over knee) and Matra Basti (medicated oil enema) with Sahachara Taila along with Adityapaka Guggulu on osteoarthritis of knee joint. AYU. 2023;44(3):96-102. [doi: 10.4103/AYU.AYU 219 17]
- 48. Sharma N, Shringi M. Janu Basti, electrotherpy and traction in the management of Sandhigatavata under the influence of trayodashanga guggulu. J Ayurveda. 2010;4(2):56-69.
- 49. Chiluveri AC, Chiluveri SK, Patil RP. Ayurvedic management of osteoarthritis knee with grade IV severity and obesity (Avaranajanya Janu-Sandhigatavata with Sthoulya). J Res Ayurvedic Sci. May 2019;2(4):240-246. [FREE Full text] [doi: 10.5005/jp-journals-10064-0064]
- 50. Brindha TR, Prabhu K, Jones S, Janaki CS, Sheriff D, Kumar HM, et al. The GC-MS study of the ayurvedic formulation "Dhanwantharam Thailam" used for rheumatism. J Pharm Bioallied Sci. Apr 2024;16(Suppl 2):S1829-S1832. [FREE Full text] [doi: 10.4103/jpbs.jpbs 14 24] [Medline: 38882853]
- 51. Rasool M, Varalakshmi P. Protective effect of Withania somnifera root powder in relation to lipid peroxidation, antioxidant status, glycoproteins and bone collagen on adjuvant-induced arthritis in rats. Fundam Clin Pharmacol. Apr 2007;21(2):157-164. [doi: 10.1111/j.1472-8206.2006.00461.x] [Medline: 17391288]
- 52. Sumantran VN, Kulkarni A, Boddul S, Chinchwade T, Koppikar SJ, Harsulkar A, et al. Chondroprotective potential of root extracts of Withania somnifera in osteoarthritis. J Biosci. Mar 1, 2007;32(2):299-307. [doi: 10.1007/s12038-007-0030-3] [Medline: 17435322]
- 53. Sundaran J, Begum R, Vasanthi M, Kamalapathy M, Bupesh G, Sahoo U. A short review on pharmacological activity of Cissus quadrangularis. Bioinformation. Aug 31, 2020;16(8):579-585. [FREE Full text] [doi: 10.6026/97320630016579] [Medline: 33214745]
- 54. Parisuthiman D, Singhatanadgit W, Dechatiwongse T, Koontongkaew S. Cissus quadrangularis extract enhances biomineralization through up-regulation of MAPK-dependent alkaline phosphatase activity in osteoblasts. In Vitro Cell Dev Biol Anim. Dec 5, 2009;45(3-4):194-200. [doi: 10.1007/s11626-008-9158-1] [Medline: 19057968]
- 55. Samarasinghe RM, Kanwar RK, Kumar K, Kanwar JR. Antiarthritic and chondroprotective activity of lakshadi guggul in novel alginate-enclosed chitosan calcium phosphate nanocarriers. Nanomedicine (Lond). May 2014;9(6):819-837. [doi: 10.2217/nnm.13.219] [Medline: 24401101]
- 56. Sharma VD, Sharma A, Kushwah HK. An indigenous approach to manage the osteoarthritis of knee joint with lakshadi guggulu, kalka-patra bandhan and knee traction. Anc Sci Life. Jan 2007;26(3):23-29. [FREE Full text] [Medline: 22557237]
- 57. Gundeti MS, Mangal A, Reddy R, Sunita, Dua P, Khanduri S, Bharti, et al. Clinical evaluation of laksha guggulu and mukta-shukti pishti in the management of osteopenia/osteoporosis. J Res Ayurveda Siddha. 2016;37(1-4):54-63. [FREE Full text]
- 58. Sharma K, Joshi N, Dash MK, Peter H. Standardization of mukta shukti bhasma- an ayurvedic medicine. J Drug Res Ayurvedic Sci. 2016;1:81-94. [FREE Full text]

59. Chauhan O, Godhwani JL, Khanna NK, Pendse VK. Antiinflammatory activity of muktashukti bhasma. Indian J Exp Biol. Oct 1998;36(10):985-989. [Medline: 10356960]

Abbreviations

ACR: American College of Rheumatology **AIIMS:** All India Institute of Medical Sciences

CRF: case record form
GCP: Good Clinical Practice
KFT: kidney function test
LFT: liver function test

MRI: magnetic resonance imaging **RCT:** randomized controlled trial

SPIRIT: Standard Protocol Items: Recommendations for Interventional Trials **WOMAC:** Western Ontario and McMaster Universities Osteoarthritis Index

Edited by J Sarvestan, A Schwartz; submitted 02.11.24; peer-reviewed by K Kumar, D Javed; comments to author 31.01.25; revised version received 19.02.25; accepted 19.03.25; published 03.09.25

<u>Please cite as:</u>

Rai AK, Yadav B, Kumar U, Gupta B, Patel K, Khanduri S, Sharma BS, Singhal R, Chandrasekhararao B, Srikanth N, Acharya R Efficacy of a Multimodal Ayurveda Regimen in the Management of Primary Knee Osteoarthritis: Protocol for an Open-Label Randomized Controlled Trial

JMIR Res Protoc 2025;14:e68306

URL: https://www.researchprotocols.org/2025/1/e68306

doi: <u>10.2196/68306</u> PMID: <u>40900633</u>

©Amit Kumar Rai, Babita Yadav, Uma Kumar, Bharti Gupta, Kishore Patel, Shruti Khanduri, Bhagwan S Sharma, Richa Singhal, Bhogavalli Chandrasekhararao, Narayanam Srikanth, Rabinarayan Acharya. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 03.09.2025. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on https://www.researchprotocols.org, as well as this copyright and license information must be included.

