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Abstract

Background: Pediatric asthma is a heterogeneous disease; however, current characterizations of its subtypes are limited. Machine
learning (ML) methods are well-suited for identifying subtypes. In particular, deep neural networks can learn patient representations
by leveraging longitudinal information captured in electronic health records (EHRs) while considering future outcomes. However,
the traditional approach for subtype analysis requires large amounts of EHR data, which may contain protected health information
causing potential concerns regarding patient privacy. Federated learning is the key technology to address privacy concerns while
preserving the accuracy and performance of ML algorithms. Federated learning could enable multisite development and
implementation of ML algorithms to facilitate the translation of artificial intelligence into clinical practice.

Objective: The aim of this study is to develop a research protocol for implementation of federated ML across a large clinical
research network to identify and discover pediatric asthma subtypes and their progression over time.

Methods: This mixed methods study uses data and clinicians from the OneFlorida+ clinical research network, which is a large
regional network covering linked and longitudinal patient-level real-world data (RWD) of over 20 million patients from Florida,
Georgia, and Alabama in the United States. To characterize the subtypes, we will use OneFlorida+ data from 2011 to 2023 and
develop a research-grade pediatric asthma computable phenotype and clinical natural language processing pipeline to identify
pediatric patients with asthma aged 2-18 years. We will then apply federated learning to characterize pediatric asthma subtypes
and their temporal progression. Using the Promoting Action on Research Implementation in Health Services framework, we will
conduct focus groups with practicing pediatric asthma clinicians within the OneFlorida+ network to investigate the clinical utility
of the subtypes. With a user-centered design, we will create prototypes to visualize the subtypes in the EHR to best assist with
the clinical management of children with asthma.

Results: OneFlorida+ data from 2011 to 2023 have been collected for 411,628 patients aged 2-18 years along with 11,156,148
clinical notes. We expect to complete the computable phenotyping within the first year of the project, followed by subtyping
during the second and third years, and then will perform the focus groups and establish the user-centered design in the fourth and
fifth years of the project.

Conclusions: Pediatric asthma subtypes incorporating RWD from diverse populations could improve patient outcomes by
moving the field closer to precision pediatric asthma care. Our privacy-preserving federated learning methodology and qualitative
implementation work will address several challenges of applying ML to large, multicenter RWD data.
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Introduction

Globally, nearly 22 million children are diagnosed with asthma
[1]. In the United States alone, 4.5 million children are living
with asthma, and exacerbations from asthma account for an
estimated 500,000 emergency department visits and 64,000
hospitalizations annually [2-4]. Care for school-aged children
with asthma accounts for US $5.92 billion of US health care
spending [5]. Asthma is a chronic respiratory disease
characterized by constriction of the lower airways, resulting in
wheezing, cough, and shortness of breath [1]. Although asthma
can be diagnosed with pulmonary function tests, it is often
diagnosed clinically by a physician based on patient history and
examination [1].

Pediatric asthma is a heterogeneous disease characterized by a
range of etiologies, triggers, clinical manifestations, severities,
and treatment responses [6]. Such disease heterogeneity can be
classified into subphenotypes or subtypes. However, current
pediatric asthma subtypes are primarily confined to allergic
versus nonallergic asthma [7]. This simple dichotomous
classification does not account for overlapping subtypes, the
evolution of subtypes over time as a child grows and develops,
differences in severity (especially considering racial and ethnic
disparities), or the influence of social determinants of health
(SDOH; defined as nonmedical factors that influence health
outcomes according to the World Health Organization [8]). It
is imperative to improve subtype characterization of pediatric
asthma to facilitate more personalized and effective primary
and emergency care and reduce the burden of care at both
individual and population levels.

Machine learning (ML) methods such as deep neural networks
that capture longitudinal information to learn new patient
representations, combined with downstream clustering, are
well-suited for identifying relevant subtypes [9]. Clustering
algorithms for pediatric asthma subtypes would ideally be
applied to large data sets containing voluminous electronic
health record (EHR) data, including free-text note data, from
diverse areas and populations. However, the inclusion of
protected health information (PHI) and other sensitive data in
EHR free-text notes raises privacy concerns, which requires the
deidentification of structured and narrative EHR information.
Manual deidentification is time-consuming and cannot be scaled
up to large-scale studies, whereas automated deidentification
of EHRs using machines cannot completely remove PHI.
Federated learning is a subfield of ML that can address these
privacy issues by allowing a central server to communicate with
local sites to learn a global model, the parameters of which are
then sent back to the local sites [10].

In this study, we propose to apply novel, privacy-preserving
federated ML methods to identify and model pediatric asthma
subtypes and their progression over time [11]. Federated learning
is an ML technique that trains a shared global model with a
central server while keeping data at the local sites, as opposed
to aggregating individual site data together [10]. We will apply
federated learning to a large, distributed clinical research
network containing nearly 20 million demographically and
socioeconomically diverse patients from the southeastern United
States (Florida, Georgia, and Alabama). Despite the increasing
sophistication of various ML techniques, there remain significant
challenges in implementing ML algorithms, decision tools, and
other forms of clinical support in frontline health care settings
[12]. Therefore, we will also interweave our technical data
science methods with qualitative implementation science
research to “design for dissemination” [13], and ultimately
optimize the translation of our research findings into clinical
practice.

Methods

Overview of the Data Source and Study Design
This study uses the OneFlorida+ clinical research network [14],
which is a large regional network covering linked and
longitudinal patient-level real-world data (RWD) from over 20
million patients from Florida, Georgia, and Alabama in the
United States. OneFlorida+ contains detailed patient
demographic data, diagnoses, procedures, vital signs,
medications, and laboratory results from Medicaid and Medicare
claims; vital statistics; and EHRs from 15 clinical partners. Data
quality in OneFlorida+ is maintained at each step of the data
pipeline, with quality assurance governed by the OneFlorida+
data trust team.

To accomplish our study aims (Figure 1), we will initially
develop and optimize a research-grade pediatric asthma
computable phenotype (CP) and a clinical natural language
processing (NLP) pipeline to accurately extract pediatric
asthma–relevant information from EHRs. Subsequently, we
will use deep learning models to capture the temporal
representation of patients at each local site. Through federated
learning, we will collaboratively learn the representation models
across different sites and leverage federated clustering to
characterize harmonized pediatric asthma subtypes and their
progression across the sites in the OneFlorida+ database. We
will also integrate focus groups with OneFlorida+ clinical
network asthma clinicians to assess the clinical utility of the
identified subtypes. Additionally, we will develop initial EHR
prototypes for visualizing subtype information and evaluate the
utility of these prototypes.
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Figure 1. Overview of the mixed methods study design. CP: computable phenotype; EHR: electronic health record; NLP: natural language processing;
RWD: real-world data; SDOH: social determinants of health.

Ethical Considerations
The University of Florida Institutional Review Board (IRB)
approved the subtyping study, including the use of both
structured and unstructured data with a waiver of informed
consent (UF IRB#202002779). For each participating site in
this study, data will be securely stored on Health Insurance
Portability and Accountability Act–compliant servers approved
for the storage of PHI. Access to these files will be restricted
to individuals included in the IRB protocol, ensuring compliance
with ethical and regulatory standards. Specifically, for the
University of Florida site, data will also be stored on HiPerGator
for the required computing resources. We will adhere to the
established procedures outlined in the “PHI on HiPerGator
Process” documentation [15], which includes registering the
project through a request in the University of Florida’s
Integrated Risk Management system and ensuring all project
members sign the corresponding agreement form. For the focus

group study, we will consent participants and compensate them
with US $150 per session.

Stakeholder Advisory Committee
We will initially establish a stakeholder advisory committee to
provide guidance on the study design, interpretation of results,
and the dissemination and implementation of findings. In
addition to the core study team, we will include multiple
pediatric asthma stakeholders, including patients and caregivers,
in the advisory committee (Textbox 1). The committee will
meet twice yearly for the 5-year duration of the study. Meetings
will comprise study team presentations on study progress and
results. Committee members will be prompted for specific
feedback and will also have ample opportunities to provide any
input and suggestions to the study team. The number of
members, their professional roles, and the guidance requested
from the committee were determined according to
Patient-Centered Outcomes Research Institute Research
Engagement Principles [16].

Textbox 1. Composition of the stakeholder advisory committee.

• Patients and caregivers (n=2 teenage patients and n=2 caregivers)

• School nurses (n=1 elementary school, n=1 middle/high school)

• Clinical providers (n=2 primary care pediatricians, n=1 emergency or intensive care pediatric physician, n=1 allergist, n=1 pediatric pulmonologist)

• Health systems administrator (n=1)

• Public health agency representative (n=1)

• Health care insurance representative (n=1)

• Core study team (n=4)
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Developing a Pediatric Asthma CP
Accurately identifying pediatric patients with asthma from
retrospective EHRs is crucial for ensuring the fidelity of the
entire project. Although diagnostic criteria for asthma exist, as
published by the National Asthma Education and Prevention
Program [17], many clinicians rely on combinations of patient
history, physical exam findings, and/or diagnostic tests to
diagnose asthma in children. Additionally, pediatric asthma can
present with varied and subtle symptoms. Therefore, simple
inclusion and exclusion criteria based on International
Classification of Diseases codes may not be sufficiently nuanced
or comprehensive to identify all pediatric patients with asthma.

CPs are clinical states determined solely from EHR and/or other
data that can be processed by a computer [18]. To date, there
has been no widely validated and accepted pediatric asthma CP
developed. Existing CPs for identifying pediatric patients with
asthma from longitudinal EHR data (eg, CAPriCORN, PheKB,
and NLP-PAC [19-21]) have shown variable performance when
externally validated. We will refine these existing CPs and, if
necessary, develop our own de novo pediatric asthma CP using
a variety of structured and unstructured data available in the
University of Florida and OneFlorida+ EHRs. If the
development of new CPs is required, we will apply ML-based
models (eg, transformer-based models). We will use standard
CP development methods, including chart review by expert
physicians to label charts. According to the methods of Buderer
et al [22], given a Type I error of .05 and an acceptable width
of the 95% CI of 0.1 with an estimated prevalence of pediatric
asthma in the United States of 8.1% [1], for a minimum
specificity and sensitivity of 0.9, we will need to manually
review at least 427 charts as the minimum sample size. Due to
sample size requirements for the NLP pipeline (see below), we
will review 500 charts in the qualifying pediatric age range of
2-18 years. We plan to sample the charts from the entire
pediatric data set to avoid bias in the development of the CP.
We may need to review more charts to have a sufficient number
of asthma cases.

Developing a Clinical NLP Pipeline to Categorize
Pediatric Patients With Asthma and Their Disease
Severity
A key aspect of pediatric asthma research using RWD is
appropriately identifying patients with asthma and categorizing
them by severity, clinical outcomes, and other characteristics
(eg, SDOH). However, relying solely on structured data limits
the ability of algorithms to identify and classify pediatric patients
with asthma [23]. For example, some symptoms defining asthma
severity (eg, nighttime cough, frequency of rescue inhaler usage)
may be found only in clinical notes. Therefore, incorporating
unstructured data using NLP can enhance the performance of
pediatric asthma CPs [24]. We will extract patient characteristics
from clinical narratives (ie, clinical concept
extraction/named-entity recognition) by systematically
examining different NLP models, with a focus on deep learning
models (especially transformers such as Bidirectional Encoder
Representations from Transformers), which have shown superior
performance to other model types [25]. These models scan input

words in sequence and determine the optimal labeling based on
context features from surrounding words.

To build these models, we will perform a comprehensive
literature search for keywords and phrases related to history,
symptoms, environmental factors, and SDOH pertinent to
pediatric asthma. We will then highlight these keywords and
phrases in notes using the web-based annotation system BRAT
[26]. The coprincipal investigator, who is a clinician experienced
in the treatment of pediatric asthma, will train a team of 5
research coordinators to annotate records. At least 2 annotators
will annotate the same 500 notes to develop an annotated
gold-standard data set. Any disagreements will be resolved by
the clinical coprincipal investigator. We will then split this data
set into training and testing data sets, and the corpus will be
normalized using a pipeline previously constructed for sentence
boundary detection and tokenization [27]. We will apply our
large language model GatorTron [28] to handle both negation
and abbreviations in a unified model. Model performance (ie,
how accurately the model extracted the entities of intent) will
be evaluated on the testing data set with the microaveraged
precision, recall, and F1-score using strict and lenient (ie, partial
matching of boundary) criteria. The best-performing model will
be used to extract relevant pediatric asthma data from clinical
notes, which can be incorporated into refining the CPs
mentioned above.

Of note, with both CP and NLP pipeline development, the same
data can exist in both structured and unstructured forms, which
may not have the same value, making data harmonization a key
consideration for this project. To select the most reliable and
detailed information source, we will carefully review all
pediatric asthma variables and CP rules during each project step
for redundancy, accuracy, and complimentary/discordant data.
For example, a medication prescription can be found in the
structured data (eg, inhaled corticosteroid), but the true
frequency of its use by the patient may be found in the clinical
notes (eg, once daily instead of twice daily). To mitigate
redundancy, we will use strategies such as data deduplication
[29], feature selection [30], and integrating insights from both
structured and unstructured sources [31]. To enhance accuracy
and reconcile any discrepancies between data sets, we will use
techniques such as data fusion [32] and expert review.

Modeling Pediatric Asthma Subtypes and Their
Temporal Progression Pathways With a Patient
Representation Learning Model
After identifying pediatric patients with asthma using the most
accurate CP, we will model the temporal representation of the
asthma severity levels. Toward this end, we will include 2 years
of data before and a minimum of 2 years after asthma symptoms
first appear, as data prior to an asthma diagnosis allows for the
inclusion of antecedent data that may be critical to asthma
subtyping. We will define the asthma onset date by the first date
in which the patient is classified as a positive case as per the
most accurate pediatric asthma CP.

As illustrated in Figure 2, we will aggregate relevant EHR data
for each patient into vectors within 3-month blocks (ie, window
sizes, although we will consider varying window sizes in this
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project). Each vector corresponds to a particular event type (eg,
clinical encounter, diagnosis, procedure, medication, or
symptoms) based on discrete structured data and data extracted
from clinical notes using NLP. For example, the dimensionality
of a diagnosis vector equals the number of distinct diagnosis
codes, with each dimension’s value representing the frequency
of that code appearing in the current 3-month period. We will

divide each patient’s data into multiple subsequences. We plan
to explore a wide range of deep learning methods, including
long short-term memory autoencoders (baseline) [33],
outcome-oriented transformers [34], and block-recurrent
transformers [35], based on our initial review of state-of-the-art
models to effectively represent the sequential records of
pediatric patients with asthma.

Figure 2. The asthma temporal trajectory in electronic health records.

After obtaining temporal representations, we will apply
hierarchical agglomerative clustering [36] to determine the
clusters of the subsequences (ie, states), as illustrated in Figure
3. Subsequences will be grouped according to the similarity of
their progression embedding vectors learned through the
previous modeling process. We will select the Ward method
for hierarchical agglomerative clustering [36]. Unlike other
methods that measure distance directly, the Ward method
focuses on analyzing the variance of clusters. It achieves this
by iteratively merging the most similar clusters, with the goal
of minimizing the increase in the error sum of squares upon
cluster combination. By reducing variance within each cluster,
the Ward method facilitates the formation of compact and

distinct clusters. Once we have established the clusters of
subsequences (ie, states), we will determine the states for each
patient based on the cluster centers of the corresponding
subsequences derived from that patient. The trajectory pattern
of the patient is represented by different states that change over
time (ie, the progression from one state to another). Each
progression subtype will include patients with similar trajectory
patterns. For instance, if a patient is divided into four
subsequences and three states (eg, A1, A2, A3) are identified
using the clustering algorithm [10], the trajectory pattern of that
patient would be “A1 to A3 to A1 to A2.” Additionally, we will
develop predictive models to identify key features that transition
patients from one state to another, using different states as labels.
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Figure 3. Identifying asthma progression subtypes. (A) Framework of identifying asthma progression subtypes. (B) System structure of federated
clustering. (C) Explanation of progression subtypes.

Federated Learning for Identifying Asthma
Progression Subtypes Across OneFlorida+ Networks
In the subsection above, we described how we will model
pediatric asthma subtypes and their temporal progression
pathways using a patient representation learning model within
individual local institutions. However, extending this approach
to distributed clinical research networks such as OneFlorida+
necessitates careful consideration of privacy issues. Hence, we
propose leveraging federated learning, which is a technique that
connects fragmented data sources to learn a global model
without sharing sensitive patient data across sites [10]. Under
this federated learning framework, each OneFlorida+ site
periodically communicates the local updates to a central server.
The central server then aggregates these updates and sends back
the parameters of the updated global model to the sites. This
process ensures that patient data remain decentralized and secure
while allowing collaborative model training across distributed
sites.

In addition, we will use a federated clustering approach to
identify OneFlorida+ site–specific subtypes and shared subtypes
across all OneFlorida+ sites, accounting for the heterogeneity
of patients with asthma across different health care systems.
Figure 3B shows examples of site-specific progression subtypes
for two theoretical sites (ie, site A and site B). The colorful
progressions (ie, orange paths and blue paths at the bottom of
Figure 3B) are local site-specific progression subtypes. The
grey paths represent shared progression subtypes (ie, created
after federated learning clustering identified global states by
leveraging other sites’ data).

Studying the Utility and Integration of Progression
Subtype Data Into Clinical Practice
While asthma severity classifications are currently used as
clinical decision support for pediatric asthma clinicians [37],
our subtype data are expected to encompass a broader range of
features. Prior to integrating our findings into a user-centered
design of an EHR-based clinical decision support system, it is
essential to know how clinicians will use the novel asthma
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progression subtypes generated by this project, specifically what
information is most relevant (eg, subtype characteristics,
progression patterns, modifiable risk factors) and how it is used
in different practice settings (eg, primary care, subspecialty
care, emergency/inpatient care).

Therefore, we have adopted a “design for dissemination”
approach [13], and will use the Promoting Action on Research
Implementation in Health Services (PARIHS) framework [38]
to interweave our quantitative subtyping results with qualitative
feedback from pediatric asthma clinicians. We will conduct
sequential rounds of focus groups to better understand the
clinical utility of this information and plan for its eventual
clinical implementation. The first round of focus groups will
involve practicing pediatric asthma clinicians from local
OneFlorida+ sites, where we will present the progression
subtype results (including both site-specific and global model
data). We will recruit focus group participants from the spectrum
of clinicians who care for children with asthma to understand
how progression subtype data are interpreted and used across

the continuum of care, including primary care physicians (eg,
pediatricians, family medicine practitioners), emergency
physicians, pediatric inpatient hospitalists and critical care
physicians, pediatric pulmonologists, and allergists, as well as
health information technology professionals. For clinician
participants, we will recruit MDs, DOs, and other allied health
professionals who autonomously see patients and have been in
practice at least 2 years.

We will deductively code focus group transcripts using the
PARIHS framework, which was selected owing to its ability to
systematically explore themes key to the implementation of
research into clinical practice (Table 1). Two members of the
study team trained in qualitative methods will separately code
the transcripts. We will calculate Cohen κ for coder interrater
reliability and resolve discrepancies by study team consensus.
Using NVivo, we will combine related codes to construct
overarching themes and relate those themes to PARIHS elements
and subelements (Table 1).

Table 1. Promoting Action on Research Implementation in Health Services (PARIHS) framework and themes [38] to explore in the first round of focus
groups.

Relation to studyPARIHS element

Evidence

Subtype features, number, progressionsResearch

SDOHa, health disparities, patient age, health literacyClinical and patient experience

Site-specific versus global subtype modelsLocal data

Context

Clinician, health care system, patient/caregiver, communityCulture

Health care system and payer attitudes, clinician incentivesLeadership

Asthma severity classification, patient-centered outcomesEvaluation

Facilitation

Clinical decisions, risk factor modificationPurpose

Specialty, clinical settingRole

Specialty, clinical setting, EHRb fluencySkills and attributes

aSDOH: social determinants of health.
bEHR: electronic health record.

Based on feedback from the first round of focus groups and our
stakeholder advisory committee, we will develop multiple EHR
design prototypes, according to a user-centered design, for
incorporating pediatric asthma progression subtype data
(considering both shared/global subtypes and site-specific
subtypes). Subsequently, we will conduct a second round of
focus groups with the same participants to present these EHR
design prototypes in a high-fidelity manner (ie, demonstration
video showing how the system is integrated into the clinicians’
EHR with functionality, and, when applicable, a mock-up system
where the end users can interact in a simulated EHR
environment). During these sessions, we will gather clinicians’
feedback on how they would interpret the information and
interact with alerts and other functions (when applicable),

identify usability issues, and solicit preferences and suggestions
for improvement.

Study Limitations and Potential Expansions
While OneFlorida+ is a large sample of pediatric patients with
asthma, it does not represent all pediatric patients with asthma,
and thus our subtypes may not be generalizable nationwide or
worldwide. Missing data is possible, particularly with regard
to patient-reported variables. When possible, we will query the
free-text data to fill in missing variables. For variables likely
to be missing at random, we will use tools such as multiple
imputation by chained equations and regression-based
imputations [39]. For variables missing not at random, we will
consider selection model–based methods, including
outcome-dependent sampling for longitudinal outcomes [39].
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We will leverage the infrastructure of OneFlorida+ and our
study team’s existing relationships with clinical partners at each
identified site to recruit practicing clinicians for focus groups.
In the unlikely event that we do not meet our target recruitment
for focus group participants, we can expand the focus groups
beyond the OneFlorida+ network.

Results

Funding Acquisition and Recruitment
This study obtained funding from the National Institutes of
Health/National Heart, Lung, and Blood Institute on September

1, 2023 (1R01HL169277). In September 2024, we began data
abstraction. The OneFlorida+ data trust contains approximately
21.29 million patients. Between 2011 and 2023, OneFlorida+
recorded data for 411,628 patients aged 2-18 years and contained
11,156,148 clinical notes.

Current Asthma CPs
As an initial step in developing pediatric asthma CPs, we
conducted a rapid review of the published English-language
literature for existing CPs for pediatric asthma. The review
identified four CPs for pediatric asthma and a fifth for
classifying pediatric asthma severity (Table 2).

Table 2. Existing pediatric asthma computable phenotypes (CPs), data composition, and performance metrics.

Performance metricsaUnstructured dataStructured dataCP

Specificity (%)Sensitivity (%)NPVc (%)PPVb (%)

96899690NoYesCAPriCORN [40]

87739067YesYesPheKB [41]

96929789YesYesNLP-PAC [24]

N/RN/RN/Rd98NoYesProblem List [42]

N/AN/AN/AN/AfYesYesPediatric Asthma

Severitye [43]

aPerformance metrics based off original studies.
bPPV: positive predictive value.
cNPV: negative predictive value.
dN/R: not reported.
ePerformance judged by various components of computable phenotypes and combinations of components agreement with physician expert review of
severity as judged by the weighted κ value, which ranged from –0.11 to 0.46.
fN/A: not applicable.

Project Timeline
In the first year of the project, we will construct and optimize
the pediatric asthma CP and develop a clinical NLP pipeline to
better categorize pediatric asthma patients and their disease
severity. In the second and third years, we will implement
federated learning strategies to model pediatric asthma subtypes
and their progression. In the fourth and fifth years, we will
engage in focus groups with frontline asthma clinicians to assess
the clinical utility of the subtypes, design EHR prototypes for
clinicians to visualize subtype information, and conduct another
round of focus groups to gather feedback on the EHR prototypes.
Our stakeholder advisory committee will convene biannually
throughout the project’s duration. We expect to publish our
subtyping results in year 4 and the focus group and EHR
prototype work at the end of year 5.

Discussion

The results of this project will advance both methodologic and
clinical science. With regard to technical and methodologic
development, the CP and NLP pipeline can assist other pediatric
asthma researchers. Our novel privacy-preserving federated
learning methodology addresses several challenges associated
with analyzing large multicenter RWD and provides a
generalizable framework for other clinical research networks.
Additionally, the framework of our federated learning
methodology could also be applied to the study of subtypes of
other chronic, heterogeneous diseases. Clinically, pediatric
asthma progression subtypes incorporating RWD can help
improve patient outcomes by moving the field closer to precision
pediatric asthma care, tailoring medications, addressing
potentially preventable risk factors, and preventing exacerbations
that risk morbidity and mortality. Importantly, our concomitant
qualitative research and stakeholder engagement lays the
foundation for efficient and timely implementation of our
subtypes into clinical practice.
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ML: machine learning
NLP: natural language processing
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SDOH: social determinants of health

Edited by D Khajeei;The proposal for this study was peer-reviewed by: ZRG1 HSS-B (02) - Center for Scientific Review Special
Emphasis Panel (National Institutes of Health, USA). See the Multimedia Appendix for the peer-review report; Submitted 05.03.24;
accepted 04.06.24; published 08.07.24.

Please cite as:
Xu J, Talankar S, Pan J, Harmon I, Wu Y, Fedele DA, Brailsford J, Fishe JN
Combining Federated Machine Learning and Qualitative Methods to Investigate Novel Pediatric Asthma Subtypes: Protocol for a
Mixed Methods Study
JMIR Res Protoc 2024;13:e57981
URL: https://www.researchprotocols.org/2024/1/e57981
doi: 10.2196/57981
PMID: 38976313

©Jie Xu, Sankalp Talankar, Jinqian Pan, Ira Harmon, Yonghui Wu, David A Fedele, Jennifer Brailsford, Jennifer Noel Fishe.
Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 08.07.2024. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR
Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on
https://www.researchprotocols.org, as well as this copyright and license information must be included.

JMIR Res Protoc 2024 | vol. 13 | e57981 | p. 11https://www.researchprotocols.org/2024/1/e57981
(page number not for citation purposes)

Xu et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

https://www.researchprotocols.org/2024/1/e57981
http://dx.doi.org/10.2196/57981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38976313&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

