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Abstract

Background: Ecological momentary assessments (EMAs) and digital wearables (DW) are commonly used remote monitoring
technologies that capture real-time data in people’s natural environments. Real-time data are core to personalized medical care
and intensively adaptive health interventions. The utility of such personalized care is contingent on user uptake and continued
use of EMA and DW. Consequently, it is critical to understand user preferences that may increase the uptake of EMA and DW.

Objective: The study aims to quantify users’ preferences of EMA and DW, examine variations in users’ preferences across
demographic and behavioral subgroups, and assess the association between users’ preferences and intentions to use EMA and
DW.

Methods: We will administer 2 discrete choice experiments (DCEs) paired with self-report surveys on the internet to a total of
3260 US adults through Qualtrics. The first DCE will assess participants’ EMA preferences using a choice-based conjoint design
that will ask participants to compare the relative importance of prompt frequency, number of questions per prompt, prompt type,
health topic, and assessment duration. The second DCE will measure participants’ DW preferences using a maximum difference
scaling design that will quantify the relative importance of device characteristics, effort expectancy, social influence, and facilitating
technical, health care, and market factors. Hierarchical Bayesian multinomial logistic regression models will be used to generate
subject-specific preference utilities. Preference utilities will be compared across demographic (ie, sex, age, race, and ethnicity)
and behavioral (ie, substance use, physical activity, dietary behavior, and sleep duration) subgroups. Regression models will
determine whether specific utilities are associated with attitudes toward or intentions to use EMA and DW. Mixture models will
determine the associations of attitudes toward and intentions to use EMA and DW with latent profiles of user preferences.

Results: The institutional review board approved the study on December 19, 2022. Data collection started on January 20, 2023,
and concluded on May 4, 2023. Data analysis is currently underway.

Conclusions: The study will provide evidence on users’ preferences of EMA and DW features that can improve initial uptake
and potentially continued use of these remote monitoring tools. The sample size and composition allow for subgroup analysis by
demographics and health behaviors and will provide evidence on associations between users’preferences and intentions to uptake
EMA and DW. Limitations include the cross-sectional nature of the study, which limits our ability to measure direct behavior.
Rather, we capture behavioral intentions for EMA and DW uptake. The nonprobability sample limits the generalizability of the
results and introduces self-selection bias related to the demographic and behavioral characteristics of participants who belong to
web-based survey panels.
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Introduction

Ecological momentary assessments (EMAs) and digital
wearables (DWs) are exemplars of remote monitoring
technologies that afford us the ability to monitor the individual
and their environment around the clock [1]. Remote monitoring
technologies are a hallmark of precision medicine, whereby
medical and health decisions can be tailored to the individual
based on their unique and up-to-date data [2]. Specifically, EMA
is an approach where people’s experiences and behaviors are
repeatedly captured through brief self-report surveys [3]. DWs
are electronic devices that repeatedly collect, process, store, and
transmit data either directly through an internet connection or
indirectly through a smartphone [4]. EMAs and DWs capture
momentary contextual, sociopsychological, physiological, and
behavioral data in the wild (ie, in real time and in a person’s
natural environment), which improves the accuracy, granularity,
and ecological validity of the measurements [5].

User-generated data on behavioral and medical conditions from
EMAs and DWs can be used for diagnostic, management, and
treatment purposes [1]. Examples include (1) detection of
smoking and alcohol use episodes and lapses [6-8] and of
various medical conditions [9] (eg, seizures [10] and atrial
fibrillation) [11,12]; (2) management of diabetes [13],
hypertension [14], physical activity, and diet [15-18]; and (3)
treatment of cigarette smoking [19], sleep [20], and mood
disorders [21] by intervening whenever and wherever support
is needed. Data from EMAs and DWs can improve health and
clinical outcomes through various mechanisms. EMAs and DWs
capture events and behaviors, their determinants, and their
effects. These data relate to several cognitive processes (eg,
self-monitoring) underlying the self-regulatory mechanism that
motivates and guides proactive and purposeful actions [22].
Additionally, data from EMAs and DWs represent feedback
information to their users that is used to form and assess
self-views and goals [23], thereby reinforcing desired behaviors
[24]. Indeed, evidence shows that EMA and DW use is
associated with improved health outcomes [25,26] (cf [27,28]).

Real-time EMA and DW data are the foundation of intensively
adaptive health interventions and personalized medical care.
Intensively adaptive interventions use ongoing information
about the user to disseminate (or not) an appropriate treatment
type and dose at the right time and place, relying on predefined
decision rules that accommodate between- and within-user
characteristics and other tailoring factors (eg, intrapersonal state
and contextual cues) that change by the day, hour, or second
over the course of an intervention [29,30]. For example, in
Text2Quit, an interactive text messaging smoking cessation
intervention, users’ data are periodically updated throughout
the intervention (eg, number of cigarettes smoked) and
subsequently integrated in pre- and postquit support messages
[19]. In Sense2Stop, users wear chest and wrist DWs and answer
smoking- and mood-related EMAs, both of which trigger digital
prompts for users to engage in exercises to manage stress, a

known antecedent of smoking lapse [31]. Although evidence
on the efficacy and effectiveness of intensively adaptive
interventions is largely based on pilot studies [32], they often
outperform nonadaptive interventions [33]. Similarly, in clinical
settings, continuous input from remote monitoring tools can be
integrated into a patient’s electronic health record, which
subsequently informs medical decision-making and improves
clinical outcomes [34,35].

To reap the benefits associated with the use of remote
monitoring technology, end users must uptake and continually
use these digital tools. Uptake refers to the likelihood that an
individual is willing to take part in an EMA or use a DW [36].
Continued use refers to the likelihood that an individual
consistently completes the EMAs or uses DWs as prescribed
[37]. Rates of EMA and DW uptake and continued use are
frequently low or variable. For example, health and fitness
mobile apps have a mere 3.7% retention rate 30 days post
installation [38] and a third of DW owners stop using their
devices within 6 months [39]. When reported, EMA completion
rate varies across studies, between 20% and 90% in substance
use studies [8] and between 44% and 96% in diet and physical
activity studies [16]. Compounding these issues, the
operationalization of uptake and continued use is often absent
or inconsistent across research studies. For example, some
studies report percentages of participants who engage in an
activity or a previously set threshold of that activity, while others
report averages or the exact number of times or number of days
participants engage in a given activity [40]. Researchers have
documented some of the facilitators of and barriers to the uptake
and continued use of EMAs and DWs. Facilitators of use include
perceptions of utility, usefulness, ease of use, usability, and
having the motivation and ability to use the technology, to name
a few [40]. Barriers include technical (eg, technology
malfunction and incompatibility) and nontechnical (eg, digital
literacy and cost) factors [40].

Uptake and continued use may be improved when the features
of EMAs and DWs match the preferences of potential users.
However, there is scarce evidence on the relative importance
of different attributes and attribute levels of EMAs and DWs
that might affect uptake and potentially continued use, although
uptake and continued use are driven by different factors [4].
Indeed, the design of EMAs varies greatly regarding key
attributes. For instance, the length of EMA studies ranges from
1 to 182 days, with a median of 7 days, whereas the number of
daily prompts ranges from 1 to 42 [41]. Additionally, user
preferences for specific attributes are rarely examined across
sociodemographic and behavioral subgroups, despite
well-documented differences in uptake and continued use of
remote monitoring technologies between these groups [41,42].
There is also little evidence on the relationship between EMA
and DW preferred attributes and intentions to use remote
monitoring technologies.
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Using a discrete choice experiment (DCE) [43], this study aims
to identify the optimal attributes of EMAs and DWs that may
increase uptake and continued use. A DCE is a quantitative
survey-based methodology that elicits preferences by presenting
participants with alternatives and asking them to make a choice.
The process is repeated with different combinations of attributes,
and the resulting data are used to calculate the relative
importance each participant places on each attribute [44]. In
previous studies, this method has been used to elicit preferences
for health mobile apps [45-47], sharing health data [48,49], and
health interventions [50]. In this study, 2 DCEs will elucidate
preferences for EMAs and DWs, examine how these preferences
vary across demographics (ie, sex, age, and race and ethnicity)
and behaviors (ie, substance use, physical activity, dietary
behavior, and sleep duration), and assess whether specific
preferences are associated with attitudes toward or intentions
to use EMAs and DWs in the future.

Methods

Aims
This study aims to (1) quantify the relative importance of 5
EMA attributes (ie, prompt frequency for surveys, number of
questions per prompt, prompt type, health topic, and assessment
duration) and 30 DW features centered around 6 domains (ie,
device characteristics, effort expectancy, social influence, and
facilitating conditions related to technical, health care, and
market factors); (2) identify the relative importance of EMA
and DW attributes within demographic (ie, sex, age, and race
and ethnicity) and behavioral (ie, those who meet vs who do
not meet predefined criteria or guidelines for a given behavior)
subgroups; and (3) examine the associations between users’
preferences and EMA and DW uptake intentions.

Design
The focal point of the study is 2 DCEs (Multimedia Appendix
1). Each participant will complete only 1 DCE.

The first DCE will assess EMA preferences using a choice-based
conjoint design [51,52] in which 5 attributes (eg, number of
surveys per day) are presented as a package. Each attribute is
assigned one of several levels (eg, 2-3 surveys or 6 or more
surveys). Participants choose between 2 packages or neither
package. Attributes and levels (Table 1) were selected from
previous research on EMAs [15,16,18,41,53]. Collectively, over
1500 unique packages can be constructed from these attribute
levels. However, a balanced fractional factorial design will be
implemented in Qualtrics so that each participant only needs to
repeat the task 9 times and evaluate 18 packages.

The second DCE will measure DW preferences using a
maximum difference scaling design [54,55] in which participants
view a subset of 4 features from a larger set of 30 features (Table
2). Participants choose which feature in the subset they value
the most and which they value the least. The attributes and
corresponding statements were adapted and developed from
previous research on DWs [4,56-60] and digital health tools
more broadly [40,46,48,50,61-65]. Attribute domains correspond
to constructs derived from technology acceptance theoretical
frameworks [66]. The attributes and corresponding statements
center around effort expectancy, defined as the level of ease in
using the technology; social influence, defined as the level of
support the user of the technology receives from important
others; and facilitating conditions related to technical
infrastructure, health care, and market factors that can prohibit
or support the technology use [66]. We also include device
characteristics as an external factor associated with technology
acceptance [59]. Although over 24,000 combinations of
attributes are possible, each participant will only be required to
complete the task 23 times.
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Table 1. Attributes and attribute levels in an ecological momentary assessment discrete choice experiment.

DescriptionsAttributes and attribute levels

Prompt frequency

None or only 1 survey0-1 per day

2-3 surveys2-3 per day

4-5 surveys4-5 per day

6 or more surveys≥6 per day

Number of questions per prompt

1 question1 question

2-3 questions2-3 questions

4-5 questions4-5 questions

6 or more questions≥6 questions

Prompt type

Self-initiated when a predefined event has occurred (eg, smoking a cigarette, snacking
between meals, or being in a specific location such as a bar)

Event-contingent

At random timesSignal-contingent

On fixed timesTime-contingent

Combination of random and fixed timesMixed

Health topic

Nicotine or tobacco useNicotine or tobacco use

Alcohol drinkingAlcohol use

Marijuana useMarijuana use

ExercisePhysical activity

Diet or nutritionNutrition

SleepSleep

Assessment duration

1 month or shorter≤1 month

More than 1 month but less than 6 months>1 but <6 months

More than 6 months but less than 1 year≥6 but <12 months

1 year or longer≥1 year
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Table 2. Attributes examined in the digital wearables discrete choice experiment.

StatementsDomains and attributes

Device characteristics

Type • The device collects nonmedical data (eg, steps)
• The device collects medical data (eg, blood glucose)

Point of contact • I must wear the device on my chest or ankle

Battery life • The device must be charged every 48 hours

Display • The device has a touchscreen interface

Memory • The device has a memory chip to prevent data loss

Cellular data • The device must be always connected to the internet

Personalization • I can personalize the device to my individual goals and preferences
• I can change the look and feel of the device (eg, by using different strap styles and

colors)

Added features • The device provides information in languages other than English (eg, Spanish)
• The device allows me to interact with other users if I want to

Effectiveness • The accuracy of the device has been proven in scientific studies

Effort expectancy

Ease of use • The device is easy to use

Data sync • The device syncs automatically with a smartphone

Comfort • The device fits with my lifestyle and daily activities
• The device can cause skin irritations

Social influence

Peer recommendation • A friend or family member recommended the device to me

Facilitating technical factors

Compatibility • The device is compatible with all smartphones (eg, Android and Windows)
• The device is compatible with popular health apps

Data security and privacy • I can enable or disable location tracking on the device
• I get to choose when and how the device shares data
• My data are encrypted
• My data will be sold to third parties for profit

Facilitating health care factors

Insurance • The device is covered by health insurance

Doctor recommendation • My doctor recommended the device to me

Data exchange • I can share the data with my doctor

Facilitating market factors

Costs • The device is under US $150

Customer reviews • The device has a high customer rating

Warranty • The device comes with a 2-year warranty

Customer service • There is a number I can call if the device stops working
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Sample
A nonprobability sample of 3260 US adults, 18 years and older,
will be recruited nationwide to participate in a web-based
survey. The sample will be equally split across biological sex,
age groups, and race and ethnicity to allow comparisons of
users’ preferences within demographic subgroups (Table 3).
Sample size calculations were performed using standard DCE
formulas [67,68]. A sample of 333 participants is required for
the EMA DCE based on the formula n≥1000(x)/yz, where x is
the maximum number of levels of any attribute, y is the number

of choices per task excluding the option none, and z is the
number of times the task is completed per participant [ie,
1000(6)/(2 × 9) = 333]. A sample of 163 participants is required
for the DW DCE based on the formula n≥500(w)/yz, where w
is the number of features and y and z are defined identically to
the previous formula [ie, 500(30)/(4 × 23) = 163]. However,
the minimum sample for the DW DCE will be set at 300
participants in accordance with recommended guidelines [68].
Based on these calculations, the study should be well powered
even when the sample is further stratified by demographic and
behavioral subgroups.

Table 3. Target sample characteristics (N=3260).

Participants, n (%)Characteristics

Sex

1630 (50)Female

1630 (50)Male

Age (years)

815 (25)18-29

815 (25)30-44

815 (25)45-59

815 (25)≥60

Race and ethnicity

652 (20)Non-Hispanic American Indian, Alaska Native, Native Hawaiian, or Pacific Islander

652 (20)Non-Hispanic Asian

652 (20)Hispanic or Latino

652 (20)Non-Hispanic Black

652 (20)Non-Hispanic White

Recruitment
Through its research panels, Qualtrics will send an invitation
email to individuals with demographic characteristics that match
the target sample. The email includes links to 2 identical
surveys: the first has the EMA DCE, and the second has the
DW DCE. The email also includes an estimated time to complete
the survey and the incentive offered. Qualtrics will compensate
participants and distribute the incentives at a rate equivalent to
surveys of similar scope, burden, and duration. Data collection
will continue until the desired sample size and composition are
reached.

Procedures
Participants will consent before proceeding to any survey
questions. Consenting participants will respond to inclusion and
exclusion questions. To be included in the study, participants
must be adults residing in the United States. Inclusion questions
include zip code, age, biological sex, and race and ethnicity.
The latter 3 questions are the basis of built-in hidden quotas for
sample characteristics (Table 3). When a quota is met (eg, 50%
females already recruited), participants who belong to that
subgroup will not be allowed to take the survey. The only
exclusion criterion is when participants respond yes to “Do you
use any fitness tracker, smartwatch, or electronic medical device

to monitor or track your health?” [69]. Participants who use a
DW are excluded to improve inferences about preferences
among nonusers. Ineligible participants receive a thank you
message and are not allowed to proceed any further. Eligible
participants will proceed to the remainder of the study questions.
Except for completing 1 of the 2 DCEs, all instructions and
questions are identical for all participants. The survey will take
about 30 minutes to complete.

Measures
We will collect sociodemographic (ie, zip code, biological sex,
age, race and ethnicity, sexual orientation, education, household
income, employment, marital status, and English language
proficiency) [69,70] and health (ie, weight and height [69],
general health [71], emotional health [72], perceived
susceptibility to disease [73], underlying health conditions [70],
having a regular health care provider [69], and health insurance
[69]) data. We also collect behavioral data on nicotine and
tobacco use [74,75], marijuana use [76], alcohol use [77], fruit
and vegetable intake [69], physical activity [69], and sleep [69],
all of which are risk factors for chronic conditions and are thus
the focus of health and medical interventions. These behavioral
data allow comparisons of users’ preferences within behavioral
subgroups. Where each participant can demonstrate any number
of the 6 behaviors examined in the study, we follow public
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health guidelines to group each participant into 1 of 2 groups,
one where participants do (vs do not) meet those guidelines and
thresholds for each behavior as follows: (1) Nicotine and tobacco
use is defined as current use of any nicotine or tobacco product
[78]. (2) Marijuana use is defined as current use of marijuana
or cannabis [78]. (3) Alcohol misuse is defined as daily
consumption of >1 drink per day for women and >2 drinks per
day for men, or as total consumption of >7 drinks per week for
women and >14 drinks per week for men [79,80]. Alcohol use
questions are asked only of participants 21 years or older. (4)
Insufficient physical activity is defined as <150 minutes or 2.5
hours of physical activity per week [81]. (5) Inadequate fruit
and vegetable intake is defined as <5 servings of fruit and
vegetables total per day [79]. (6) Insufficient sleep is defined
as <7 hours of sleep per night [82].

We also collect data on digital technologies access and use
[69,83]; phone affinity [84]; previous use of [69], attitudes
toward [85], and satisfaction with health applications [86];
attitudes toward wearable devices [85]; technology acceptance
[59,87-89]; and willingness and intentions to use EMAs and
DWs.

Data Analysis
Data from both DCEs will be analyzed using hierarchical
Bayesian multinomial logistic regression models [90,91]. These
models will generate subject-specific utilities quantifying the
relative importance of each attribute to each participant. EMA
and DW attribute preferences will be characterized among all
participants and within subgroups defined by sex (female or
male), age group (18-29 years, 30-44 years, 45-59 years, or 60
years or older), race and ethnicity (Non-Hispanic American
Indian, Alaska Native, Native Hawaiian, or Pacific Islander;
Non-Hispanic Asian; Hispanic or Latino; Non-Hispanic Black;
or Non-Hispanic White), or health behavior (meeting vs not
meeting established public health guidelines for each behavior).
Differences between subgroups will be evaluated using t tests,
analysis of variance, or linear regression, as appropriate. The
association between each utility and each measure of attitude
toward or intention to use EMAs and DWs will be depicted in
correlation matrices generated from data comprising all
participants or data from specific demographic or behavioral
subgroups. A latent profile analysis [92,93] of individual-level
utilities will be performed to detect segments of individuals
who share common preferences. The extent to which
demographics or behavioral characteristics predict membership
in these segments will be quantified using the 3-step method
[94,95]. The Bolck, Croon, and Hagenaars method [96] will
evaluate whether specific segments are associated with specific
attitudes or intentions.

Ethical Considerations
The study was deemed exempt on December 19, 2022, under
category 2: research that only includes interactions involving
educational tests, survey procedures, interview procedures, or
observation of public behavior [§45 CFR 46.10(d)(2)], National
Institutes of Health Institutional Review Board (001208).

Results

Data collection started on January 1, 2023, and concluded on
May 4, 2023. Data analysis is ongoing.

Discussion

This protocol outlines a survey-based DCE to identify attributes
that are associated with the uptake of EMAs and DWs. EMAs
and DWs are remote monitoring technologies that capture
real-time data in users’ natural environments that are
foundational to precision medicine. These data-driven
approaches to health and medical care are the face of an
increasingly digital ecosystem and align with the emphasis on
person-centered care [97].

The study will generate insights on the optimal attributes and
features that users value to maximize the uptake of EMAs and
DWs. Such insights have significant health and medical
implications given the ubiquitousness of mobile technologies.
In 2021, smartphone ownership was at 85% in the United States
[98] and there were approximately 100,000 health care apps on
the Apple App Store and Google Play Store [99,100]. As of
2022, wearables penetration was at 25.3% among US adults
[101] and is forecast to reach 628.3 million devices globally by
2026 [102]. Additionally, mobile health technologies enjoy
acceptance and demand from users and patients [103]; interest
of commercial, research, and health care entities [104,105]; and
support of national and international policies and initiatives
[106,107]. These technologies have given rise to terms like
digital biomarkers, digital diagnostics, digital therapeutics, and
digital treatments [1]. They are becoming common in medical
research as well as available directly to users who can engage
in self-care within (eg, electronic health records) [108] or outside
(eg, faith organizations) [109] the traditional health care system.
This is especially relevant given the prevalence of chronic
conditions (eg, heart disease) and associated modifiable risk
factors (eg, tobacco use) that are suited for remote monitoring
[110]. Programs for the integration of telemonitoring in clinical
and medical care for managing and treating chronic conditions
in patients are developed and piloted [26,34], providing a
far-reaching platform for health care delivery that can benefit
underserved populations such as those with limited access to
health care or those who disproportionally bear the highest
burden of disease and risk factors [111].

The study has several limitations. Participants belong to
web-based survey panels, rendering the results nongeneralizable
to the US population and raising concerns about self-selection
bias. The Qualtrics platform does not permit the inclusion of 2
DCEs in the same survey. Accordingly, participants received
an invitation email with links to both surveys but were permitted
to take only one. Although current use of a wearable device is
an exclusion criterion for this study, the sample can include
ex-users of wearables who may hold preexisting attitudes toward
DWs based on previous experiences. Because of the
cross-sectional nature of the survey, we capture behavioral
intentions rather than EMA and DW use behavior. To avoid
survey burden, we limited the number of EMA attributes and
DW features. The study has several strengths, including a robust
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sample size that allows for subgroup analysis by
sociodemographic and behavioral groups. The study also
examines the preferences-intentions relationship that provides

actionable information to increase the uptake of EMAs and
DWs, especially among at-risk or disadvantaged populations.
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