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Abstract

Background: Digital health technologies using mobile apps and wearable devices are a promising approach to the investigation
of substance use in the real world and for the analysis of predictive factors or harms from substance use. Moreover, consecutive
repeated data collection enables the development of predictive algorithms for substance use by machine learning methods.

Objective: We developed a new self-monitoring mobile app to record daily substance use, triggers, and cravings. Additionally,
a wearable activity tracker (Fitbit) was used to collect objective biological and behavioral data before, during, and after substance
use. This study aims to describe a model using machine learning methods to determine substance use.

Methods: This study is an ongoing observational study using a Fitbit and a self-monitoring app. Participants of this study were
people with health risks due to alcohol or methamphetamine use. They were required to record their daily substance use and
related factors on the self-monitoring app and to always wear a Fitbit for 8 weeks, which collected the following data: (1) heart
rate per minute, (2) sleep duration per day, (3) sleep stages per day, (4) the number of steps per day, and (5) the amount of physical
activity per day. Fitbit data will first be visualized for data analysis to confirm typical Fitbit data patterns for individual users.
Next, machine learning and statistical analysis methods will be performed to create a detection model for substance use based
on the combined Fitbit and self-monitoring data. The model will be tested based on 5-fold cross-validation, and further preprocessing
and machine learning methods will be conducted based on the preliminary results. The usability and feasibility of this approach
will also be evaluated.

Results: Enrollment for the trial began in September 2020, and the data collection finished in April 2021. In total, 13 people
with methamphetamine use disorder and 36 with alcohol problems participated in this study. The severity of methamphetamine
or alcohol use disorder assessed by the Drug Abuse Screening Test-10 or the Alcohol Use Disorders Identification Test-10 was
moderate to severe. The anticipated results of this study include understanding the physiological and behavioral data before,
during, and after alcohol or methamphetamine use and identifying individual patterns of behavior.

Conclusions: Real-time data on daily life among people with substance use problems were collected in this study. This new
approach to data collection might be helpful because of its high confidentiality and convenience. The findings of this study will
provide data to support the development of interventions to reduce alcohol and methamphetamine use and associated negative
consequences.
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Introduction

Background
Substance use disorder (SUD) is a major public health concern
worldwide. The harmful use of alcohol is responsible for 5.1%
of the global burden of disease (7.1% for males and 2.2% for
females) [1]. The prevalence of heavy episodic drinking, defined
as ≥60 g of pure alcohol on at least one occasion at least once
per month, was 18.2% in 2016 among the total population [2].
Alcohol use disorders are more prevalent in high-income
countries [2]. About 5.5% of the global population aged 15-64
years had used psychoactive drugs in the previous year, and
about 35 million people are estimated to be affected by drug
use disorders [3]. However, treatment access has been limited
because of the increasing costs of the health care system, patient
time demands, and concerns about stigma [4-7]. Additionally,
alcohol and other substance use increased during the COVID-19
pandemic [8-10]. The need for accessible and effective health
care services has increased.

Ecological Momentary Assessment
Advances in technology have the potential to reduce barriers to
treatment services in this field. Broadly known as digital health
or mobile health (mHealth), research in these areas uses mobile
and computer software apps and wearable biosensor devices to
understand and treat health conditions better [11-15]. In the
field of SUD, various mobile apps have been developed to
provide information on substance use and preventive health
care services to continuously track specific health data such as
substance use or support chronic condition management.
Additionally, mHealth programs can help bridge treatment gaps
by allowing patients to communicate with their physician or
health care team without meeting face-to-face. One of the typical
approaches of mHealth in this area is the ecological momentary
assessment (EMA) method. The EMA approach has been
developed to explore real-time substance use and motives,
cravings, or triggers of substance use in daily life [12,16-19].
EMA has more benefits in capturing data on situations of
substance use in the real world than cross-sectional or laboratory
setting assessment because substance use is an episodic behavior
influenced by immediate environmental factors (eg, external
triggers) and internal factors such as stress and craving, which
can be difficult to practically and ethically duplicate in an
experiment environment [15-17]. Moreover, self-reported
substance use can be biased by retrospective recall [20]. In a
typical EMA, signaled prompts are sent to participants on a
portable device (eg, smartphone) several times per day. The
timing of the prompts depends on each study. There are
generally the following 3 patterns: random time, fixed time,
and event contingent. When participants receive these prompts,
they are required to record their current thoughts, behaviors,
and feelings on their devices.

Although EMA has advantages in assessing substance use
accurately and repeatedly, compliance and missing data are still
challenges [18,21]. Participants are likely to be unwilling to
complete assessments during work, while studying, or when
spending time with friends [22]. In people who use substances,
noncompliance may occur because of an unstable life, comorbid
psychopathology, and social pathology [17,23]. Missing data,
especially systematically missing data (not at random), can lead
to low statistical power and biased findings [18,24].
Uncomplicated EMA methods to minimize a participant’s
engagement with a collection tool are needed to increase
compliance with the EMA protocol. Moreover, it is difficult to
confirm the validity of the data collected by self-reported
assessment [25], even when using EMA methods, because social
desirability bias influences subjective judgment when people
report situations regarding substance use, especially illicit drug
use [26,27].

Wearable Activity Trackers
One of the solutions to the challenges of EMA might be the use
of a wearable activity tracker (eg, Fitbit and Apple Watch),
which can automatically collect participants’ data. Although
these products are not specifically made for the data collection
on substance use, researchers can repeatedly gather various
objective data, such as behavioral data (eg, steps and sleep) and
biological data (eg, heart rate, blood pressure, and degree of
stress). These devices have been used in observational studies
to collect accurate real-time data [28-30], as well as in
intervention studies to promote healthy behavior and improve
health-related outcomes [31-33]. Also, numerous data collected
repeatedly over minutes, hours, or days for a certain period
enable the prediction of health outcomes using machine learning
methods. For example, acute exacerbation of chronic obstructive
pulmonary disease [34], depression [35], movement types [36],
sleep stage [37], and COVID-19 symptom exacerbation [38]
were detected by analyzing data collected using wearable
devices.

If a wearable activity tracker and a self-monitoring tool that
records variables related to substance use are combined in a
study, researchers can collect behavioral and biological data
with minimal reliance on participant input. Moreover,
researchers can analyze the data collected by a wearable activity
tracker in many ways because these data could be potential
predictive factors of substance use or subsequent outcomes
following substance use. Daily self-monitored behavioral data
along with momentary biological data collected by wearable
activity trackers have the potential to bridge important data
gaps.

Purpose of This Study
This paper aims to introduce a procedure for implementing
wearable tracker technologies as a method of EMA. We describe
the methods to analyze data on substance use and psychological
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data using a self-monitoring app and objective behavioral and
biological data using a wearable activity tracker (Fitbit). We
will develop a predictive model of substance use by analyzing
combined data using machine learning methods.

Methods

Materials and Equipment

Wearable Activity Tracker (Fitbit)
Fitbit (a registered trademark of Fitbit LLC) provides devices
that offer a range of wearable activity trackers that can
automatically track and display a users’ daily activity, exercise,
and sleep data in real time. Fitbit is designed for use on both
Android and iOS smartphones. Its popularity has grown
consistently over the years, selling approximately 16 million
devices in over 100+ countries in 2019, with an active user
community of over 29 million users [39]. The device used in
this study was the Fitbit Inspire 2 which uses a combination of
a 3-axis accelerometer and optical heart rate monitor in order
to track daily steps, calories burned, distance traveled, active
minutes, floors climbed, sleep duration and quality, heart rate,
and GPS-based information [40].

Self-monitoring Apps
Two self-monitoring mobile apps were newly developed for
use in this study, depending on whether the participant had
mainly alcohol or drug-related problems. Self-monitoring is a
widespread approach in mHealth apps in the field of substance
use [41]. Moreover, self-monitoring is low-intensive, feasible,
and effective for reducing substance use [42]. App content in
this study were developed based on previous studies that
implemented a web-based relapse prevention program in which
treatment effectiveness was already validated [43]. The newly
developed self-monitoring apps used validated content and user
interfaces from the previous study.

Study Design
This study is an ongoing observational study using a Fitbit and
a self-monitoring app (Figure 1). Participants were required to
wear the Fitbit for 8 weeks as well as open the Fitbit app every
day in order to sync the Fitbit data with their smartphones.
Participants were also required to record daily entries in a
self-monitoring app for 8 weeks and answer an in-app survey
at the time of participation, 1-month, and 2-month follow-up.
After the study was finished, participants received the Fitbit
along with a gift card as compensation for participating in the
study.

Figure 1. Content included in the self-monitoring apps. API: application programming interface; DB: database.

Participants and Recruitment
Participants were outpatients with alcohol or methamphetamine
use disorders from 2 psychiatric hospitals in Japan. A
psychiatrist specializing in SUD screened potential participants
based on inclusion and exclusion criteria, and patients were
referred to the study if applicable. General residents with alcohol
problems were recruited through a research company.
Considering realistic circumstances at each facility and the
approximate number of participants required to adequately
perform preliminary model testing using machine learning, 20
people with methamphetamine use problems and 40 people with
alcohol problems were recruited for this feasibility study.
Inclusion criteria were as follows: (1) alcohol consumption with

health risks in the past year (Alcohol Use Disorders
Identification Test [AUDIT]: 8-19 points) [44,45], or
methamphetamine use with health risks in the past year (Drug
Abuse Screening Test [DAST]-10: 1-8 points) [46,47]; (2)
owning a smartphone (iOS14 or Android 7.0 or later); (3) being
able to wear the Fitbit constantly for approximately 8 weeks
and record the self-monitoring app daily; and (4) being 20 years
of age or older. Exclusion criteria were as follows: (1) not being
able to speak or write in Japanese; (2) not being able to access
the internet or complete the web-based survey; (3) not being
able to participate for the entire 8-week research period, and
(4) attending an outpatient clinic and having been deemed
unsuitable to participate in the study by their attending
physician.
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Measurements

Fitbit Data
The following data were measured while wearing the Fitbit for
8 weeks: (1) heart rate per minute, (2) sleep duration per day,
(3) sleep stages per day, (4) the number of steps per day, and
(5) the amount of physical activity per day. Data were synced
from Fitbit to the Fitbit app every time it was connected to the
participant’s smartphone. These data were retrieved from the
Fitbit servers daily through an application programming
interface and stored per user in a secure database created for
this study. If there were no records for over 3 days in the past
week, an email reminder was sent to the participant by the
researcher.

Self-monitoring Data
The following data were measured daily through the
self-monitoring app for 8 weeks (Figure 2): (1) total alcohol
intake in pure ethanol equivalent format or the presence and
type of drug used (depending on whether the participants’ main
problem was alcohol or drug use), (2) general emotion of the
day selected from 4 typical emotion symbols, (3) presence of
alcohol or drug use triggers set by the participant, (4) degree of
craving selected from a slider scale of 0-10 points, and (5) start
and end times of the alcohol or drug use event. Data were
retrieved from the self-monitoring app daily and stored per user
in a secure database created for this study. Participants were
advised to complete the daily entries at the end of each day, but
were able to record entries the next day if it was difficult to
record an entry before the end of the day.

Figure 2. Framework for data collection using Fitbit and self-monitoring app.

Survey Data

Overview

Surveys were conducted at baseline, 4 weeks, and 8 weeks from
the start of participation (Table 1). Alcohol- and drug-related
measurements and demographics, as well as treatment history

information were collected at the baseline survey. The 4-week
survey consisted of the alcohol- and drug-related measurements
as well as the usability and satisfaction measures, and the 8-week
survey included alcohol- and drug-related measurements. A
reminder was sent to the users’ registered email addresses when
it was time to complete a survey, and a reminder email was sent
after 3 days if the survey was not completed.
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Table 1. Overview of measurements for each survey period.

8 weeks4 weeksBaseline

Alcohol- and drug-related measurements

✓✓✓Amount of alcohol (grams of pure alcohol) or drug consumed per day in the past 7
days

✓✓✓Number of drinking or drug-use days during the observational period

✓✓✓University of Rhode Island Change Assessment Scale

✓✓✓General Health Questionnaire

✓✓✓Short Form-8

Usability and satisfaction

✓System Usability Scale

✓Client Satisfaction Questionnaire

✓Adverse events concerning physical problems or discomfort using the app

Demographics

✓Gender, age, last education, employment status, and marital status

✓Primary substance (alcohol or drug)

✓Severity of substance use disorder (AUDITa or DASTb-10)

✓Treatment history

aAUDIT: Alcohol Use Disorders Identification Test.
bDAST: Drug Abuse Screening Test.

Alcohol- and Drug-Related Measurements

The amount of alcohol or drug consumed per day (grams of
pure alcohol or drug equivalent) in the past 7 days and the
number of drinking or drug-use days during the observational
period were assessed in this section. Mental health was measured
by the General Health Questionnaire abbreviated version with
a range of 0-30 points, validated in a Japanese population sample
with a cutoff of over 6 points indicating mental distress [48,49].
Health-related quality of life measures were assessed by the
Short Form-8, with higher scores indicating higher quality of
life, validated in Japanese by previous studies [50,51]. Finally,
the degree of behavioral changes was measured by the
University of Rhode Island Change Assessment Scale (URICA)
[52]. A higher URICA score indicates further progress in
behavioral change. URICA was translated into Japanese, and
equivalence between the English and Japanese versions was
partially confirmed with back translation.

Usability and Satisfaction

The System Usability Scale (SUS), which consists of a total of
10 items, was used to assess the ease of use of the app [53,54].
A higher SUS score means good usability for the self-monitoring
app. User satisfaction was measured using the Japanese version
of the Client Satisfaction Questionnaire (CSQ) [55,56]. A higher
score for the CSQ shows better satisfaction while using the
self-monitoring app. Any adverse events concerning physical
problems or discomfort using the app were asked in an

open-ended question. The validity and reliability of SUS and
CSQ have been confirmed in previous studies [54,56].

Demographics and Treatment History

Gender, age, last education, employment status, and marital
status were asked as general demographic data. The following
were also asked concerning the participants’ treatment history:
the substance primarily responsible for the problem (alcohol,
methamphetamine, marijuana, dangerous drugs, prescription
drugs, over-the-counter drugs, organic solvents, or other drugs);
the severity of SUD (AUDIT or DAST-10); the frequency of
primary substance use in the past year; frequency of primary
substance use in the past month (in days); the age of first alcohol
or drug use; the age when first recognized an alcohol or drug
use problem; the age when first sought medical care for an
alcohol or drug use problem; social resources (medical
institutions, mental health welfare centers, public health centers,
or private addiction rehabilitation facilities); and the presence
of comorbid psychiatric disorders and diagnosis.

Data Analysis
Fitbit’s application programming interfaces capture data for
heart rate per minute, sleep duration per day, sleep stages per
day, the number of steps per day, and the amount of activity
per day (hereafter referred to as “Fitbit data”). We finished
collecting the data in April 2021 and are preparing to conduct
data analysis. In order to determine substance use based on the
Fitbit data, 3 steps were applied, as shown in Figure 3, and are
described in further detail as follows:
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Figure 3. Planned future data analysis. HR: heart rate.

First, the Fitbit data will be visualized to confirm typical Fitbit
data patterns for individual users. There are many patterns to
detect drug or alcohol use; for example, the heart rate may
remain high while drinking alcohol. Accordingly, data
visualization is beneficial for confirming such patterns. If, for
example, we can detect a typical pattern as mentioned above,
signals other than that pattern may be considered noise for this
analysis. Subsequently, noise removal methods will be applied
to the Fitbit data. For example, average heart rate or heart rate
variability may also be influenced by exercise or walking rather
than drug or alcohol use. Therefore, we will use step counts or
activity amounts on Fitbit data to specifically filter out such
movement or workout periods. Other possible methods for noise
removal, in terms of signal processing, may include signal
smoothing methods, for example, moving average and Gaussian
filter. Methods will be chosen to retain typical patterns but
remove the other signals.

Second, the Fitbit data will be analyzed by using statistical
analysis methods in order to predict drug or alcohol use on a
relatively long-term basis, such as within a day or a week. By
using self-monitoring data, we can separate the Fitbit data into
data reflecting substance use and data from normal activity.
Some descriptive statistical methods, for example, averaging,
variance, self-correlation, or frequency-domain analysis, will
be applied to each parameter in the separated data sets to
determine features that include the days a user has declared drug
or alcohol use. In this analysis, survey data containing the
participants’ relation to drug or alcohol use, along with
psychological and behavioral data points, may also be added
as complements through the descriptive statistics. After
transforming the data into its statistics, we would like to apply
clustering methods to provide a quantitative evaluation of typical
patterns reflecting drug or alcohol use.

There are 2 approaches to determining an optimal detection
method for drug or alcohol use. If we can successfully obtain
distinctive features by using the above statistical analysis, we
will accordingly construct a detection model based on it.
However, constructing such a model may be insufficient to
isolate use with high accuracy and precision. Therefore, data

analysis using both machine learning and statistical analysis
methods will be performed in order to create a model that solves
the problem as indicated above, based on the combined Fitbit
and self-monitoring data. The primary candidate for machine
learning methods will be Long Short-Term Memory. Long
Short-Term Memory is considered one of the most suitable
methods for analyzing time series data, which applies to this
study. Meanwhile, other deep learning methods will also be
considered to fit the data. The deep learning model will be
carefully selected after we perform the statistical analyses, and
then this model will be tested based on 5-fold cross-validation.
Partitioning data depends on the degree of temporal precision
with which drugs and alcohol consumption is estimated. Further
preprocessing and machine learning methods will be conducted
based on the preliminary results of the validation.

Ethical Considerations
This study was approved by the Ethics Committee of the Faculty
of Medicine and Graduate School of Medicine of Tokyo Medical
and Dental University (M2020-189) and the Institutional Review
Boards of each recruiting hospital. Data collected from the
self-monitoring app were automatically stored in a protected
database. Fitbit data were archived from the Fitbit server and
preprocessed on a cloud-based, protected database without
personal information attached. These data were managed by
Humanome Lab, Inc. Both self-monitoring data and Fitbit data
were then matched using participants’ ID numbers. Patients or
participants provided their written informed consent in person
before participating in this study.

Results

Enrollment for the trial began in September 2020, and the data
collection was completed in April 2021. In total, 13 people with
methamphetamine use disorder and 36 with alcohol problems
participated in this study. Table 2 shows participants’
demographics and days of methamphetamine use or drinking.
The mean age of the participants was approximately 46 years.
In the methamphetamine group, most participants were male,
and 5 (38%) were unemployed. In the alcohol group, half of
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them were male, and 26 (72.2%) were employed. The severity
of methamphetamine or alcohol use disorder assessed on the
DAST-10 or AUDIT-10 was moderate to severe. The resting
heart rate measured by Fitbit was 72 in the methamphetamine
group and 65 in the alcohol group, whereas the sleep duration
per day was 408 minutes in the methamphetamine group and
386 minutes in the alcohol group.

There are 2 main anticipated results in this study. The first is
to gain a better understanding of physiological and behavioral
data before, during, and after alcohol or methamphetamine use.
For example, an extended period of sleep deprivation may lead
to a heightened sense of craving, and alcohol or
methamphetamine use may increase. On the other hand, sleep
quality may decrease due to several days of drinking.

The second anticipated result is to develop more personalized
predictive models for alcohol or methamphetamine use. Data
gathered through Fitbit are valuable in that it provides

longitudinal and sequential data compared to periodic visits to
hospitals. Although Fitbit is not a medical device, these data
offer a new perspective into the daily life of participants with
alcohol or methamphetamine problems. For example, individual
participants may drink at night on workdays when stressed, and
their heart rate increases to 110 beats per minute during the day.

In the future, understanding physiological and behavioral data
and identifying individual patterns of behavior may lead to more
effective personalized interventions that support preventive
behaviors such as promoting eating or sleeping as a method of
harm reduction when there is the detection of continuous levels
of high stress and accelerated heart rate. Limitations of previous
EMA and wearable tracker studies are still prevalent in this
study, as compliance and missing data are still predictable risks.
However, along with traditional deterrence methods such as
data visualization, rewards, and reminders, this study uses
consecutive biological data collected through Fitbit and an
extended study period of 8 weeks to supplement missing data.
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Table 2. Demographic characteristics of participants.

Alcohol use disorder (N=36)Drug use disorder (N=13)

18 (50)12 (92.3)Sex (male %), mean (SD)

45.5 (10.7)46.9 (9)Age (years), mean (SD)

Education, mean (SD%)

1 (2.8)3 (23.1)Middle school

6 (16.7)4 (30.8)Secondary school

6 (16.7)1 (7.7)College

23 (63.9)5 (38.5)University

Employment, mean (SD%)

26 (72.2)5 (38.5)Employed

3 (2.8)5 (38.5)Unemployed

7 (19.4)3 (23.1)Other

Marital status, mean (SD%)

10 (27.8)11 (84.6)Married

22 (27.8)2 (15.4)Single

4 (27.8)0 (0)Divorced

18.8 (2)21.2 (6.4)Age at first drug or alcohol use (years), mean (SD)

—a39.9 (9.3)Age at first hospital encounter (years), mean (SD)

DASTb-10

—6.9 (1.4)Score, mean (SD)

—3 (23.1)Moderate level (3-5; %), mean (SD)

—8 (61.5)Substantial level (6-8; %), mean (SD)

—2 (15.4)Severe level (9-10; %), mean (SD)

AUDITc-10

13.8 (5)—Score, mean (SD)

4 (11.1)—Low-risk consumption (0-7; %), mean (SD)

17 (47.2)—Hazardous consumption (8-14; %), mean (SD)

15 (41.7)—Alcohol dependence (15-40; %), mean (SD)

Days of drug use, mean (SD)

—35.9 (17.3)Did not use

—10.4 (14.9)Used primary drug

—0.3 (0.6)Used secondary drug

—2.2 (5.5)Did not answer

—7.2 (12.3)No record

33.1 (17.8)—Days of drinking, mean (SD)

75.6 (65.5)—Drinking amount per day (g), mean (SD)

State of mind (days), mean (SD)

31 (13.9)20.5 (11.3)Good

4.3 (6.3)16.8 (13.2)Not good

2 (3.1)2.8 (3.5)Angry

3.1 (4.3)5.5 (5.5)Sad

3.8 (7)3.1 (5.6)Did not answer
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Alcohol use disorder (N=36)Drug use disorder (N=13)

11.9 (12.8)7.2 (12.3)No record

4.6 (1.9)4 (3.1)Craving (0-10), mean (SD)

65.9 (9.4)72.6 (8)Resting heart rate (beats per minute), mean (SD)

386.4 (100)408.3 (192.8)Sleep duration per day (minutes), mean (SD)

Sleep stages (minutes), mean (SD)

55.8 (22)57.7 (35.8)Wake

223.1 (66.8)242.9 (128.6)Light sleep

66.4 (25)73.8 (40.8)Deep sleep

88.1 (36.5)82.1 (49.4)REMd sleep

10,277 (5481.2)8884.9 (6450.2)Steps per day, mean (SD)

Physical activity per day (minutes), mean (SD)

233.7 (100.5)204.8 (113)Lightly active

19.7 (23.4)34.3 (55.6)Fairly active

28.4 (31.2)38.6 (78.8)Very active

aNot available.
bDAST: Drug Abuse Screening Test.
cAUDIT: Alcohol Use Disorders Identification Test.
dREM: rapid eye movement.

Discussion

In this study, we collected data related to substance use and
consecutive biological and behavioral information
simultaneously using Fitbit and a smartphone app. To the best
of our knowledge, this study is the first to collect and analyze
real-time data on daily life among people with substance use
problems in Japan. Similar to other Asian countries, drug
policies in Japan are strict, and there is severe stigmatization
against people with substance use problems. The new approach
to data collection in this study might be helpful because of its
high confidentiality and convenience. We will analyze the data

in 2023 and then recruit additional participants based on the
results for a more robust analysis.

The use of digital health technologies will be increasingly
necessary in the future. In fact, during the COVID-19 pandemic,
innovations in cost-effective and user-friendly drug prevention
and treatment services, such as internet-based or mobile
phone-based services, accelerated to increase accessibility and
coverage of services [10]. Accordingly, in future research, based
on the findings of this study, we will develop an ecological
momentary intervention program to encourage participants to
reduce substance use and negative consequences.
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