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Abstract

Background: With an increase in the number of artificial intelligence (AI) and machine learning (ML) algorithms available
for clinical settings, appropriate model updating and implementation of updates are imperative to ensure applicability,
reproducibility, and patient safety.

Objective: The objective of this scoping review was to evaluate and assess the model-updating practices of AI and ML clinical
models that are used in direct patient-provider clinical decision-making.

Methods: We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) checklist and the
PRISMA-P protocol guidance in addition to a modified CHARMS (Checklist for Critical Appraisal and Data Extraction for
Systematic Reviews of Prediction Modelling Studies) checklist to conduct this scoping review. A comprehensive medical literature
search of databases, including Embase, MEDLINE, PsycINFO, Cochrane, Scopus, and Web of Science, was conducted to identify
AI and ML algorithms that would impact clinical decision-making at the level of direct patient care. Our primary end point is the
rate at which model updating is recommended by published algorithms; we will also conduct an assessment of study quality and
risk of bias in all publications reviewed. In addition, we will evaluate the rate at which published algorithms include ethnic and
gender demographic distribution information in their training data as a secondary end point.

Results: Our initial literature search yielded approximately 13,693 articles, with approximately 7810 articles to consider for
full reviews among our team of 7 reviewers. We plan to complete the review process and disseminate the results by spring of
2023.

Conclusions: Although AI and ML applications in health care have the potential to improve patient care by reducing errors
between measurement and model output, currently there exists more hype than hope because of the lack of proper external
validation of these models. We expect to find that the AI and ML model-updating methods are proxies for model applicability
and generalizability on implementation. Our findings will add to the field by determining the degree to which published models
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meet the criteria for clinical validity, real-life implementation, and best practices to optimize model development, and in so doing,
reduce the overpromise and underachievement of the contemporary model development process.

International Registered Report Identifier (IRRID): PRR1-10.2196/37685

(JMIR Res Protoc 2023;12:e37685) doi: 10.2196/37685
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Introduction

Background
The ubiquitous application of artificial intelligence (AI) and
machine learning (ML) algorithms in health care delivery has
increased [1]. Investments in clinical AI and ML algorithms are
based on their perceived potential to improve health care quality
[1]. These algorithms can automate insights directly from data
without using standard computer programming [2]. In addition,
they can analyze large data sets with high dimensionality to
yield insights and predictions on complex associations without
prior assumptions from traditional statistical methods,
differentiating AI and ML models from other statistical
techniques (interference statistics, classical prediction models,
and hypothesis testing) [3,4]. Generally, 2 methods of learning
from data exist in AI and ML: supervised and unsupervised
learning. Supervised learning involves making predictions based
on a set of prespecified input, references, and output variables,
whereas unsupervised learning is used to draw inferences from
data sets consisting of input data without labeled responses [5].

There has been a paradigm shift in health care stakeholders’
goals of quality improvement in recent years, with an emphasis
on achieving better outcomes at lower costs, while improving
the efficiency of care delivery and prioritizing personalized care
[6]. This change, resulting in the use of AI and ML algorithms,
has also been driven by regulators and payers demanding
high-value care rather than volume-based care, as well as the
changing role of patients as consumers [7]. In addition, the
unprecedented abundance of data with the advent of electronic
health records (EHRs) and other direct consumer wearables
allows the application of data-heavy clinical models [8].

Despite these perceived potentials, AI and ML algorithm
performance degrades over time, particularly because of model
calibration (calibration drift), which refers to the accuracy of
risk estimates in terms of agreement between the predicted risks
of events and their actual observed frequencies [9]. Calibration
drift arises as a consequence of deploying a model in a dynamic
environment, with the resulting difference between the
population or setting in which the model was trained and that
in which it was implemented [10].

Degradation of a model over time can also occur within the
same health care system where it was derived [11]. Among
other factors, there is a tendency toward a systematic data shift
when a model is successfully deployed [12,13]. The downstream
characteristics of data change owing to differences in the
distribution of outcomes in a prognostic model as users respond
to the model prediction. The more effective a predictive model

is to improve outcomes, the faster the model will likely degrade
[14].

Because of the sensitive nature of patient-level algorithm
predictions, consistency and accuracy are critical. Therefore,
an appropriate model-updating process is essential across the
lifetime of the model [15]. Model updating aims to improve the
performance of an existing model by adjusting (recalibrating)
its parameters and predictors, either within the same clinical
environment in which the model was developed or within an
external environment [15,16]. The best practice is to update a
clinical model rather than abandon the model, build another, or
repeat the selection of predictors, which leads to a loss of the
previous scientific information captured [11,17].

The existence of multiple models for the same clinical scenario
without model-updating methods declared ab initio leaves
clinicians uncertain of which model is appropriate to use,
potentially resulting in adverse consequences for patient care
[17]. For example, there are more than 80 models for the
prognosis of stroke [18], more than 20 models predicting
intensive care unit stay after cardiac surgery [19], more than
100 published algorithms for prognosis after neurotrauma [20],
and over 50 models to predict outcomes after breast cancer [21].

Peculiarities and Challenges of Model Updating in the
Health Care Environment
The health care model updating process faces unique challenges
owing to the health care sector’s dynamic clinical,
environmental, and regulatory ecosystem [22]. Therefore, it is
imperative to consider all these issues from the early stages of
clinical model development to ensure consistency and accuracy
over time [1,23].

Subtle population demographic changes, in addition to changes
in health care access and the heterogeneity of health insurance
coverage (health disparity), can also deteriorate a model’s future
output [1,24]. Changes in best practice clinical guidelines, in
addition to variations in practice preferences across different
health care providers, can also be a source of data shift, resulting
in suboptimal model output [1,15,25-29].

Health centers often update or change information systems and
digital health tools such as imaging software and EHRs. Models
that are not updated based on the data output of new information
systems will be suboptimal [1]. In addition, there is a constant
change in clinical nomenclature and disease coding, which can
also affect the output [23].

The health care regulatory landscape is constantly evolving as
well [30,31]. The enactment of the Affordable Care Act, which
was associated with many sweeping reforms to health care
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delivery and redefining value in health care delivery, rendered
previous standards of care invaluable [31]. As such, a model
built based on those standards will likely be suboptimal.

Issues Regarding Health Care Model Input Data
Learning artifacts or bias specific to the sites where training
data sets were produced or because of the nature of the data set
itself can ultimately result in a data set shift and model
degradation over time [1]. Most AI tools are developed based
on the nuances of specific local health care workflows and the
data they generate. For example, consider an algorithm
developed to predict sepsis based on a patient’s lactate level.
The algorithm will learn to correlate the physician’s lactate
orders with a high possibility of sepsis. However, model quality
would be reduced if there were a policy change requiring more
frequent ordering of lactate tests.

Model validation in these circumstances shows reduced
performance, as the learned pattern does not generalize across
sites and circumstances [24,32]. In addition, there is systemic
bias in the geographic distribution of patient cohorts, as
algorithms trained on US data were disproportionately trained
on patients from just 3 states (New York, California, and
Massachusetts) [33].

Label and causality leakage phenomena occur when the model’s
prediction target is directly or indirectly present in the training
data set, rendering the model prediction irrelevant [34]. An
example is a model developed to predict hospital mortality in
patients admitted to the intensive care unit. An AI model trained
naively on all data will learn to correlate extubating and turning
off the ventilator with the death of a patient and ultimately
produce a near-perfect predictive performance yet with
absolutely no clinical utility [34]. Causality leakage in the
clinical model can occur in a situation whereby a clinician orders
a test based on a high index of suspicion of a clinical outcome
that the algorithm is meant to predict; the algorithm then uses
the test to generate an alert that results in an action [35].

Overview of Model Updating Methods in Health Care
There are several methods that address the data shift required
to update models [1,16,17,23,36]. Although extensive details
of these methods are beyond the scope of our analysis, we have
highlighted the most important methods here [16,17,23,36].
The least complex method involves adjusting the model intercept
to a different prevalence or incidence rate according to the new
population (assuming risk factors still confer the same level of
risk). Another option is adjusting the population prevalence rate
and adding a single adjustment to all risk factors in the model.
One or more risk factor relationships may also need to be
adjusted, given the changes in relationships over time. A more
drastic method involves adjusting both the prevalence and the
coefficients and adding new risk factors into the model.

The last option involves refitting the entire model based on a
new data sample, either alone or in combination with the
addition of new potential risk factors (essentially remodeling
the problem from scratch on a new sample). The best options
typically depend on the time from initial model development
to the time sample sizes are updated [23]. With larger samples
or longer time periods since the initial fitting, ideal updates

usually involve the prevalence updating option or refitting the
model based on the updated sample. With small samples, it is
generally advised that no updates are made. With shorter periods
of time since the last update, it is generally recommended that
the prevalence be updated.

Time and Frequency of Model Updating
A few approaches exist to guide the timing and frequency of
model updating, each with its own advantages and limitations.
Real-time calibration drift detection and updating is usually the
most computationally intensive approach; however, real-time
detection provides users with the peace of mind that their models
are accurate at the time of use without requiring manual steps
[23]. A similar approach is incremental updating, in which
models are updated based on new instances as they become
available [16,23]. This approach is computationally extensive
and requires the same infrastructure to automatically provide
near-real-time updates automatically. Fixed and batch updating
at specified intervals is another option, with models evaluated
and updated at specific intervals; however, if the frequency of
the update is not ideal, model drift issues may exist before the
update [16,23].

Study Objectives
Our main study objective is to evaluate model updating in AI
and ML clinical models and assess model updating practices
used in direct patient-provider clinical decision-making.
Previously published reviews have established that most clinical
AI and ML models do not conduct external validation of their
models [5]. In addition, phases of model development pertaining
to applicability and reproducibility (model updating, impact
assessment, and implementation) have received less attention
in the scientific literature [37]. Clinical model-updating
processes seek to prevent model deterioration with adverse
consequences, such as inaccuracy or lack of practicality in
clinical settings; model updating can also impact generalizability
and reproducibility [37]. The model-updating processes of
clinical algorithms must be determined proactively from the
time of initial model development [32,37] to ensure patient
safety and quality of care. Understanding the degree to which
model updating is prioritized will help inform the validation of
future models and guide the modification of best practices in
model development.

Our intentions are as follows:

1. To determine if the process of clinical model updating is
mentioned or prioritized in the reviewed published clinical
AI studies used to support direct patient-provider clinical
decision-making.

2. To determine if AI and ML studies in the literature include
demographic data and if there are significant geographic
distributions of models whose investigators recommended
model-updating procedures in their publications.

3. To test correlations between the quality of published AI
clinical models and prioritization of the model-updating
process.
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Methods

Eligibility Criteria: Inclusion and Exclusion
This study protocol is for a scoping review. Our original protocol
was developed based on the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) Protocols
[38].

Inclusion Criteria and Rationale
Only AI and ML studies that involve clinically predictive or
prognostic modeling used to support specific clinical decisions
by medical providers for or against intervention for direct patient
care will be included. In addition, only human studies with
algorithms applied to organic and emotional and behavioral
health domains used directly in addressing clinical problems
(by supporting patient-provider decision-making) will be
included. Examples of algorithms we will include are those
predicting outcomes that affect clinical decisions and treatment

(mortality and morbidity and predicting length of hospital stay)
and those predicting complications and health improvement.

Algorithms comparing diagnostic modalities and tools with the
possibility of affecting clinical decisions also fall under our
inclusion criteria. We will include both observational and
experimental studies regardless of study methods, as there is a
dearth of randomized controlled trials (RCTs) in AI and ML
studies owing to the novelty of AI applications in health care
[39].

Supervised ML methods, including both classification and
regression methods, will also be included. Most supervised
predictive model outputs directly impact decisions at the point
of use, unlike unsupervised or clustering and semisupervised
methods, mostly to generate insights for a predictive problem
[40]. Studies will be included without geographic or regional
preferences. All studies that were published from March 2018
until March 2021 will be reviewed (Textbox 1).

Textbox 1. Inclusion criteria.

• Inclusion criteria and definition

• Only artificial intelligence and machine learning studies that involve clinically predictive or prognostic modeling: Diagnostic prediction
models calculate an individual’s risk of having an illness, whereas prognostic prediction models calculate the risk of certain health conditions
that could occur in the future.

• Study outcome and outcome measures format: Only human studies with algorithms and outcomes in organic and emotional or behavioral
health domains. All study outcome measures format will be included as follows: continuous, binary, ordinal, multinominal, and time-to-event.

• Supervised machine learning technique: Only articles with supervised learning methods will be included, with methods such as regression,
ensemble, and decision trees.

• Study design and data source: Any experimental or observational study that meets our inclusion criteria will be included. These include
randomized controlled trials, prospective and retrospective cohorts, case-control studies, and case-cohort studies. All data sources are
permitted, including data registries and electronic health record data.

• Predictors: Articles that use at least two predictor variables in their model development will be included.

Exclusion Criteria
Health care AI models that do not use clinical domains as a
primary end point (studies of health care operations, finance,
billing, and inventory management) will be excluded.

AI and ML studies whose predictions may not directly support
provider-patient clinical decision-making, including the
following, will also be excluded.

• Studies of population-based estimates only (incidences,
prevalence, and others)

• Patient or provider satisfaction with care
• Studies designed to improve diagnostic tools, such as

imaging and genomics

• Imaging biosignal studies that do not directly impact clinical
decision-making

• Studies that evaluate health care system quality indicators

Unsupervised and semisupervised learning and clustering studies
will also be excluded, as most data mining and unsupervised
learning models are used to generate insights into a problem or
identify predictive modeling problems [40]. Reviews, articles,
commentaries, letters to the editor, conference abstracts, and
commentary articles without algorithms will also be excluded.

We will exclude models embedded in proprietary software
where the specific ML methods used are not specified. Failure
to meet any of the above eligibility criteria will result in
exclusion from the review (Textbox 2).
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Textbox 2. Exclusion criteria.

• Exclusion criteria and definition

• Health care artificial intelligence studies that do not involve clinical domains as the primary end point: Studies of health care operations,
finance and billing, and inventory managements. These do not fall primarily under patient treatment and care.

• Purpose and potential of study not directly supporting provider-patient clinical decision-making: Studies that may not impact direct provider
decision-making at the point of care, such as population-based estimates only (incidences and prevalence), those designed to improve
diagnostic tools, and those that evaluate health care system quality indicators.

• Unsupervised learning and clustering studies: Those that mostly are used to generate insight into a problem or identify predictive modeling
problems.

• Nonexperimental articles and proprietary models: Reviews, articles, commentaries, letters to the editor, abstracts, commentaries without
algorithms, and models embedded in a proprietary software whereby the specific machine learning methods used are not specified.

• Genomics and advanced genetic algorithms: These articles are usually based on very high dimensional data and unsupervised methods,
which are beyond the scope of our analysis.

• Pathological specimen and image signal studies: Pathological specimen studies mostly seek to improve accuracy at the level of the clinical
pathologist. Image signals studies are mostly used to improve the accuracy of an imaging instrument rather than provide a basis for preferred
clinical outcomes.

Information Sources
A comprehensive literature search will be conducted using the
following databases: Ovid Embase, Ovid MEDLINE, Ovid
PsycINFO, Web of Science Core Collection, Scopus, and the
Cochrane Library. Searches will be limited to articles published
from January 1, 2018, to December 31, 2021.

Search Strategy
The search strategy for each database was developed by a
medical librarian (SW) in concert with the rest of the team. Each
search strategy used a combination of keywords and subject
headings related to ML, predictive algorithms, medical diseases
and disorders, and study design (Multimedia Appendix 1).

Statistical Analysis

Data Management
All search results will be imported into Covidence software for
deduplication and screening [41]. Covidence facilitates a blind

review process, and results from multiple databases can be
imported, deduplicated, and screened for eligibility. Following
the title and abstract screening phase, the full text of all included
abstracts will be gathered and imported. Covidence will create
a PRISMA flowchart and facilitate the data extraction and
quality appraisal phases [42].

Selection Process
Two reviewers will use the Covidence software to independently
screen the title and abstract of each article and the full text of
all included abstracts. A third-party independent reviewer will
resolve disparities. The screening process will be documented
and presented using the PRISMA flow diagram like the
flowchart in progress in Figure 1.

Before title and abstract screening, the review team will meet
to screen a random sample of 50 records to validate the inclusion
and exclusion criteria.
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Figure 1. PRISMA flow chart.

Data Collection Process
Variables collected from each eligible study will be guided by
the CHARMS (Checklist for Critical Appraisal and Data
Extraction for Systematic Reviews of Prediction Modelling
Studies) [43] and PRISMA checklists [42].

Data Items
Data items will reflect the objective of our study, which is the
need to prioritize clinical model updating as an integral part of
validating published medical algorithms. Therefore, our data
items will pertain to generalizability and applicability.

We will collect general study information, such as the title; first
author; year of publication; clinical setting, such as academic,
nonacademic, vendor, and governmental agency; disease system
of the study; aim of the algorithm (predictive vs prognostic);
type of algorithm (traditional ML vs neural network or deep
learning); and geographic region. We will also collect data on

study type and model type (research vs production model) as
well as model-updating methods.

Our preliminary search on geographic clusters of AI adoption
and model implementation revealed that AI and ML adoption
is mostly clustered in the United States, Canada, the United
Kingdom, Australia, the European Union, China, Taiwan, and
Israel [44,45]. As these regions account for most of the clinical
models created, we will use another category of “Other” to
capture models developed in other geographic regions. We will
also collect information about the data sources such as EHRs,
open registry or open sources, and closed registry or proprietary
databases.

In the Methods section, we will abstract the data relating to the
assessment of study quality (Table 1). Data on handling missing
data will also be abstracted, such as sample size, well-defined
primary outcomes, and predictors. We will also abstract data
on the study limitations considered in the Discussion section of
the article in review.
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Table 1. Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies.

Risk of biasApplicabilityGeneralDomains and key items

Source of data

✓✓Source of data (cohort, case-control, randomized trial participants, or registry data)

Participants

✓✓Participant eligibility and recruitment methods (consecutive participants, location, number of centers,
setting, and inclusion and exclusion criteria)

✓✓Participant descriptions

✓✓Details of treatment received, if relevant

✓✓Study dates

Outcome to be predicted

✓✓Definition and methods for outcome measurements

✓Determine if the same outcome definition and method for measurement was used in all patients

✓✓Type of outcome (single or combined end points)

✓Determine if the outcome was assessed without knowledge of candidate predictors (blinded)

✓Determine if candidate predictors were part of the outcome (in panel or consensus diagnosis)

✓Time of outcome occurrence or summary of duration of follow-up

Candidate Predictors (or Index Test)

✓Number and type of predictors (demographics, patient history, physical examination, additional testing,
and disease characteristics)

✓✓Definition and method for measuring candidate predictors

✓Timing of predictor measurement (patient presentation, diagnosis, and treatment initiation)

✓Determine if predictors were assessed blinded for outcome and for each other (if relevant)

✓Handling predictors in the modeling (continuous, linear, and nonlinear transformation or categorized)

Sample size

✓Number of participants and number of outcomes or events

✓Number of outcomes or events in relation to the number of candidate predictors (events per variable)

Missing data

✓✓Number of participants with any missing values (including predictors and outcomes)

✓Number of participants with missing data for each predictor

✓Handling of missing data (complete case analysis, imputation, or other methods)

Model development

✓Modeling methods (logistics, survival, neural networks, or machine learning techniques)

✓Modeling assumptions satisfied

✓Method for selecting predictors for inclusion in multivariable modeling (all candidate predictors and
preselection based on unadjusted association with the outcome)

✓Methods for selecting predictors during multivariable modeling (full model approach backward or forward
selection) and criteria used (P value and Akaike Information Criterion)

✓✓Shrinkage of predictor weights or regression coefficients (no shrinkage, uniform shrinkage, and penalized
estimation)

Model performance

✓Calibration (calibration plots, calibration slope, and Hosmer-Lemeshow test) and discrimination
(C-statistic, D-statistic, and log-rank) measures with CIs

✓Classification measures (sensitivity, specificity, predictive values, and net reclassification improvement)
and whether a priori cut points were used

Model evaluation
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Risk of biasApplicabilityGeneralDomains and key items

✓Method used for testing model performance: development data set only (random split of data, resampling
methods, bootstrap or cross-validation, or none) or separate external validation (temporal, geographic,
different settings, and different investigators)

✓✓In case of poor validation, whether the model was adjusted or updated (intercept recalibrated, predictor
effects adjusted, or new predictors added)

Results

✓✓Final and other multivariable models (basic, extended, and simplified) presented, including predictor
weights or regression coefficients, intercept, baseline survival, and model performance measures (with
SEs or CIs)

✓✓Any alternative presentation of the final prediction models (sum score, nomogram, score chart, and
predictions for a specific risk subgroup with performance)

✓Comparison of the distribution of predictors (including missing data) for development and validation
data sets

Interpretation and discussion

✓✓Interpretation of presented models (confirmatory, model useful for practice vs exploratory, and more
research needed)

✓✓Comparison with other studies, discussion of generalizability, strengths, and limitations

Evaluation Outcomes

Primary Outcome

The primary outcome of this scoping review is the percentage
of published algorithms that prioritize model-updating methods
(model updating is considered prioritized if it is part of the
algorithm protocol). We also identify articles that mention model
updating but do not apply it to algorithm protocols.

Secondary Outcomes

We will also identify any correlations between prioritizing
model updating and geographic region, and quality of studies,
as well as temporal correlation and correlation by setting of
model development. In addition, we will assess how frequently
EHRs are used for model development, given the high incidence
of inaccuracies in EHR data [46-48].

As a secondary end point, we will capture the incidence of
models reporting the demographic breakdown of their data
(ethnic background and gender); this is of particular importance
owing to potential societal harm and resulting AI and ML
algorithm setbacks because of the use of nonrepresentative data
[49].

Quality of Studies and Risk of Bias Assessment
Owing to the overemphasis on model technical validity at the
expense of downstream clinical validity in published algorithms,
a clinical model that has acceptable, technically valid prediction
results during model development with favorable statistical
indexes, such as area under the curve, does not automatically
translate to model effectiveness when deployed in real-life
clinical scenarios [1,50-52]. Rather than the in-depth technical
validity of model results, our evaluation of individual model
quality will assess a model’s ability to attain high real-life
clinical validity for generalizability. Our goal is to focus on
established factors and best practices that indicate a study’s

applicability and low risk of bias to ensure generalizability
beyond the model’s technical output as follows [52-54]:

• Applicability: the extent to which the study fits within the
inclusion and exclusion criteria of the review

• Risk of bias: the extent to which any flaws in the study lead
to overly optimistic estimates of predictive performance
measures (CHARMS article)

• Generalizability: the degree to which the study results are
relevant to the larger population

• Reproducibility: the ability to duplicate the study using the
same methods used in the original study

Checklist/Evaluation Tools for Study Quality Assessment
Best practices recommend adequate reporting of model
development to ensure reproducibility and applicability of
models in real clinical settings [2]. To evaluate the quality of
reporting of the reviewed published models, we used an
adaptation of a verified tool available for model quality
assessment [43]. The CHARMS is an 11-item checklist, with
each item created to assess the model study on the domains of
risk of bias and applicability (Table 1). The checklist is a
comprehensive guide created from a combination of 8 other
published guides that include both criteria to ascertain
applicability and reproducibility with implications for patient
safety, as well as technical validity of a model’s results, some
of which are beyond the scope of our review.

We created our quality assessment tool by extracting the criteria
that are more specific to applicability and reproducibility
analysis and that have a potential impact on patient safety and
quality of care at the level of clinical model deployment, which
resulted in our 6-item checklist for study quality assessment
(Table 2). A total of 5 items out of our 6-item checklist were
adapted from the CHARMS checklist; our last criteria, the model
development checklist standard, was obtained from literature
review best practices for model development.
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Table 2. Quality of studies and risk of bias assessment.

Maximum score (stars)Assessment criteria

Study design and missing data

Study design

(**)RCTsa

(*)Other sources and designs; cohorts, registries, convenient sampling

(*)Handling of missing data

Outcome

(*)Primary outcome is well defined

Model testing and evaluation methods

(**)Separate external validation data; geographical, temporal, and population

(*)Same development data used for validation; random split and reassembly (bootstrap and cross-validation)

Model updating method

(**)Yes

Model interpretation and applicability concerns

(*)Strengths and weaknesses of model (reproducibility, applicability, or risk of bias)

Model reporting and development standard

(*)Best practice standard for model development and reporting defined; examples of standards: CONSORT-AIb, SPIRIT-

AIc, DECIDE-AId, NEUR-UPS MLe, TRIPOD-MLf, PROBAST-MLg, and STROBEh

aRCT: randomized controlled trial.
bCONSORT-AI: Consolidated Standards of Reporting Trials-Artificial Intelligence.
cSPIRIT-AI: Standard Protocol Items: Recommendation for Interventional Trials- Artificial Intelligence.
dDECIDE-AI: Developmental and Exploratory Clinical Investigation of a Decision-Support System Driven by Artificial Intelligence.
eNEUR-UPS ML: Neural Informational Processing System in Machine learning.
fTRIPOD-ML: Transparent Reporting of a Multivariable Prediction Model of Individual Prognosis Or Diagnosis-Machine Learning.
gPROBAST-ML: Prediction model Risk Of Bias Assessment Tool- Machine Learning.
hSTROBE: The Strengthening the Reporting of Observational Studies in Epidemiology.

Rationale for Checklist Items

Checklist Items Adapted From the CHARMS Checklist:
Study Design and Data Source for Model Development

The data used to develop the algorithm may be sourced from
retrospective and prospective cohorts including RCTs and
cross-sectional studies. In addition, there is a proliferation of
sourcing model data from registries, databases, and EHRs.
Although RCTs are considered the gold standard, they also have
shortcomings similar to all other methods. Although RCTs are
designed to reduce biased outcomes, their findings can lead to
impaired generalizability of outcomes in real-life clinical
scenarios owing to the rigid eligibility criteria of study
participants [43]. Data sources for model development are
critical for the predictive accuracy, applicability, and
reproducibility of any algorithm [11,12,43,50,51].

• Outcomes: the lack of well-defined study outcomes
increases risk of bias and adversely affects model
reproducibility in real-life clinical scenarios [43]. For
example, 40% of cancer prognostic model studies were
found to have poorly defined outcomes [55]. For our quality
assessment, a well-defined outcome is considered to occur
when the definition and measurement of the outcome events

or target disease clearly correspond to the outcome
definition of the study objective [43].

• Model testing and evaluation methods: model validation is
the process of quantifying model performance in other
individuals beyond the training and testing data set used to
develop the model [56]. Whenever the predictive
performance of a model is estimated using the same data
set that was used to develop the model, it is referred to as
“apparent performance” [43]. Regardless of which modeling
technique is used, apparent performance tends to be biased,
as it can overestimate performance relative to the
performance of other individuals. It is very important that
all models be evaluated in an independent data set (external
validation) before deployment [55]. Externally validated
models (either temporal or geographic validation) provided
the best insights into the usefulness of the model for other
individuals, centers or settings, and regions. Several reviews
have shown that external validation studies are generally
uncommon [5,20,57,58], as most studies are only internally
validated by a random split sample of the data into
development and validation samples [5]. Because of the
higher impact of external validation on model applicability
in real-life clinical scenarios, we prioritize these models in
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our checklist by allocating 2 stars to any study with
externally validated models (Table 1)

• Model updating method recommendation: in the event that
an existing model shows poor performance when evaluated
in other settings (geographic or temporal), it is best practice
to adjust, update, or recalibrate the original model to
increase performance [43], as there are well-established
methods to achieve successful model updating. It is also
best practice that the potential techniques for updating a
model on external deployment can be identified before
deployment [1,32]. The primary outcome of our review is
the proactive determination of possible model-updating
methods. As such, we will prioritize any study that
proactively suggests a model-updating method as part of
its study method by scoring it as 2 stars.

• Model interpretation and generalizability concerns: best
practice guidelines for reporting medical studies recommend
discussing strengths, weaknesses, and future challenges
with regard to the generalizability of the studies [59-61].
For models, these studies should therefore provide insight
into the model’s applicability, usefulness, and intended
users [43]. This discussion also serves as a basis for
comparison with other studies. Therefore, our quality
checklist will include a score (1 star) for a study that
mentions the strengths and weaknesses of their model in
the Discussion section.

Other CHARMS Checklist Items

The remaining 6 items in CHARMS were excluded from our
assessment tool because they were already considered during
the initial screening stage of our review process (participant
characteristics and predictors). We also excluded items that
focused on technical assessment, as that is beyond the scope of
our study objective of real-life clinical applicability (technical
process of model development, model performance, results, and
sample size). Although the checklist still needs to be validated,
our adapted checklist captures the essence of our review.

Checklist Items Based on a Literature Review of Best
Practices of Clinical Model Studies: Model Development
Reporting Standards
The best practice standards for reporting primary prognostic
and predictive model studies exist in the literature [62] and
include SPIRIT-AI (Standard Protocol Items: Recommendation
for Interventional Trials- Artificial Intelligence), CONSORT-AI
(Consolidated Standards of Reporting Trials-Artificial
Intelligence), TRIPOD (Transparent Reporting of a
Multivariable Prediction Model of Individual Prognosis Or
Diagnosis), REMARK (Reporting Recommendations for
Tumour Marker Prognostic Studies), and GRIPS (Genetic Risk
Prediction Studies) [63-67]. Adhering to these guidelines may
ensure study reproducibility and could improve future real-life
applications [62,63,68]. Despite the availability of these
guidelines, there is poor overall quality of reporting in many
published AI models [53,62,68,69]. Therefore, we have included
declaring a reporting standard as part of our checklist (reporting
standard scores will receive 1 star).

For each checklist item fulfilled by the study reviewed, studies
will be scored with 1 or 2 stars as described above, with a
maximum score of 10 stars each.

Data Synthesis
After extracting data from the manuscripts, we will conduct a
narrative synthesis. Data will be summarized using descriptive
statistics, figures, and tables for visualization. Categorical data
will be presented through numbers and percentages. The
distribution of continuous data such as sample size and the
number of predictors will be assessed and described using means
and SDs for normally distributed data using median and 25th
and 75th percentiles for nonnormally distributed data. The
results will be characterized by study design, outcomes, service
delivery type, ML techniques, and model-updating properties.

Ethics Approval
On August 13, 2021, our systematic review protocol was
registered with the International PROSPERO (Prospective
Register of Systematic Reviews) CRD42021245470 [70]. Our
protocol was developed based on the PRISMA-P (Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
Protocols) 2015 statement [38]. Our study does not require an
ethics committee review because our research does not directly
involve human subject data and it will be conducted on publicly
available data from published articles.

Results

So far, we have conducted a literature search of the specified
databases. We are now in the title and abstract screening phase.
Our initial literature search yielded 13,693 articles; after
removing duplicates, we obtained approximately 11,699 articles.
We identified approximately 7810 articles for full article review
among the 8 reviewers (Figure 1). We hope to complete the
review process and disseminate the review results by spring of
2023.

Discussion

Principal Findings
AI and ML applications in health care are significantly
increasing at an estimated 40% compounded annual growth rate
[71]. Most models are proliferating because of their perceived
potential for increased quality of health care at the point of care
by providing real-time clinical decision support, early warning
sign systems, clinical documentation, improved administrative
workflow, medical device automation, and better imaging
analysis [2,71,72]. Their implementation has the potential to
move the needle from a reactive to a proactive approach,
focusing on health management rather than disease treatment
[71]. Despite this potential, there is a lack of adequate external
validation and real-life assessment of the applicability of these
models [5,36], which can adversely affect the generalizability
of clinical models at the point of implementation [5,73]. There
is also concern regarding algorithmic bias and worsening health
inequity.

Owing to the complex nature of health care environments,
clinical algorithms tend to deteriorate over time. Considering
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the constantly evolving nature of medical practice in response
to new technology, epidemiology, and social phenomena, it
appears we will always be chasing a moving target with regard
to outcome prediction using an algorithm [72]. Therefore, the
relevance of clinical data as predictor factors decays with a
half-life of only 4 months [74]. This decay phenomenon
reinforces the need for model-updating methods that can adapt
to evolving data from the inception of model development [74].
Although there are proposed methods for model updating in the
literature [23], a lack of inclusion of these methods in published
algorithms can impair a model’s applicability and
reproducibility. This review aims to highlight and raise
awareness of these issues to encourage model developers to
improve their protocols.

Limitations
Interpretation of our review should bear some limitations in
mind. First, AI and ML implementations in health care are
relatively novel and lack standardization across different regions
and clinical specialty domains. Although we established our
literature search strategy (Multimedia Appendix 1), this lack of
standards can impact the scope and sensitivity of our search and
render the reproducibility of our review challenging. While the
terms “AI” and “ML” are included in our search, terms used to
describe models and modeling are not standardized, and
therefore, it is possible that our strategy will not capture possible
emerging or lesser-known terms. In addition, our search included
only English language publications, and, as such, we cannot
generalize our findings to publications in other languages. In
addition, we did not include book chapters, theses, short papers,
editorials, non–peer-reviewed reports, or conference abstracts.

Another factor to consider in the interpretation of our results is
that the studies we reviewed were published during the global
COVID-19 pandemic. The impact of the pandemic on the nature
and type of AI and ML studies published during this time is
unknown.

Conclusions
In this scoping systematic review, we will review published AI
and ML algorithms across all clinical fields and geographic
regions to determine how frequently model-updating methods
are suggested in published studies. We believe that the AI and
ML model-updating methods offered in published models are
a proxy for a model’s generalizability and implementation
reproducibility. We aim to determine the geographic distribution
of published models that prioritize model-updating methods
and if any correlations exist between the quality of the model
reported and the suggested model-updating method. Owing to
the faulty evaluation of real-life generalizability and
reproducibility of AI systems, recent studies have shown that
health care AI and ML performance may be overly optimistic
[72]. Although AI and ML applications in health care have
potential, some have argued that AI and ML is presently riding
atop the peak of “inflated expectations” [72]. We aim to
ascertain the degree to which published model results include
ethnic and gender demographic data in the light of
well-established algorithmic bias in health care.

Our findings will add to the literature on model clinical
validation and real-life implementation and help improve best
practices for model development by prioritizing updating. We
will conduct the scoping review with the hope of moving the
needle of contemporary model development away from the peak
of “inflated expectations” [72] to the nadir of enlightened reality.
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