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Abstract

Background: There is a growing demand globally for emergency department (ED) services. An increase in ED visits has
resulted in overcrowding and longer waiting times. The triage process plays a crucial role in assessing and stratifying patients’
risks and ensuring that the critically ill promptly receive appropriate priority and emergency treatment. A substantial amount of
research has been conducted on the use of machine learning tools to construct triage and risk prediction models; however, the
black box nature of these models has limited their clinical application and interpretation.

Objective: In this study, we plan to develop an innovative, dynamic, and interpretable System for Emergency Risk Triage
(SERT) for risk stratification in the ED by leveraging large-scale electronic health records (EHRs) and machine learning.

Methods: To achieve this objective, we will conduct a retrospective, single-center study based on a large, longitudinal data set
obtained from the EHRs of the largest tertiary hospital in Singapore. Study outcomes include adverse events experienced by
patients, such as the need for an intensive care unit and inpatient death. With preidentified candidate variables drawn from expert
opinions and relevant literature, we will apply an interpretable machine learning–based AutoScore to develop 3 SERT scores.
These 3 scores can be used at different times in the ED, that is, on arrival, during ED stay, and at admission. Furthermore, we
will compare our novel SERT scores with established clinical scores and previously described black box machine learning models
as baselines. Receiver operating characteristic analysis will be conducted on the testing cohorts for performance evaluation.

Results: The study is currently being conducted. The extracted data indicate approximately 1.8 million ED visits by over 810,000
unique patients. Modelling results are expected to be published in 2022.

Conclusions: The SERT scoring system proposed in this study will be unique and innovative because of its dynamic nature
and modelling transparency. If successfully validated, our proposed solution will establish a standard for data processing and
modelling by taking advantage of large-scale EHRs and interpretable machine learning tools.
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Introduction

Background
Across the globe, there is increasing demand for emergency
department (ED) services [1,2]. Increased ED visits have
resulted in overcrowding and long waiting times [3-5].
Furthermore, adverse patient outcomes have been reported, such
as mortality [6], poor patient satisfaction, and high costs [7,8].
As the first layer of emergency care in an ED, triage plays an
essential role in assessing and stratifying patients’ risks and
ensuring that the critically ill receive appropriate emergency
treatment promptly [9].

The triage process is commonly conducted by medical staff
based on their own clinical experience, the patients’ symptoms,
and basic information obtained from patients during their
presentation to the ED. To make this critical step more objective,
triage systems have been introduced. Some examples of triage
systems include the 5-level Emergency Severity Index [10] in
the United States, the Australasian Triage Scale [11] in
Australia, and the Patient Acuity Category Scale (PACS) [12]
in Singapore. They are simple and easy to use but subjective
and static. These scores are based on symptoms, but many
critically ill patients may not have apparent symptoms when
they arrive at the ED and their conditions deteriorate rapidly
during their stay in the hospital. To address this limitation, more
dynamic and accurate risk prediction tools are required for better
patient monitoring throughout the ED journey [13].

In response to this gap of needs, researchers are interested in
developing multivariable predictive models and clinical scores
to identify patients in the ED at risk of adverse outcomes such
as admission [14,15], death [16], cardiac arrests [17], and
intensive care unit (ICU) admission [18]. Models such as these
are primarily based on patient information, vital sign instability,
changes in laboratory results, and administrative records.
However, some parameters may appear similar between
high-risk patients and other patients during an ED visit, making
the prediction models less accurate.

Additional risk factors such as comorbidities, underlying chronic
diseases, past hospitalization history, and other patient-related
factors should be considered [19]. Furthermore, nonpatient
factors are also integral components of patient care that can
impact patient outcomes. Research has identified emergency
boarding as a risk factor for mortality [6]. In addition, mortality
rates were found to be higher for patients admitted during
periods of high ED crowding regardless of their demographic
characteristics, comorbidities, or primary diagnosis [20].
Changes in shift and high patient-to-nurse ratios have also been
factors of concern [21].

In building predictive models, both traditional statistical methods
and machine learning tools have been thoroughly investigated.
Logistic regression is the most commonly used tool to construct
multivariable prediction models [16,22,23]. In recent years,

machine learning and artificial intelligence (AI) have gained
popularity as tools for improving model performance. Fernandos
et al [24] conducted an in-depth review of the current state of
AI-based clinical decision support systems for triage. A recent
study in the United States demonstrated the value of machine
learning models for admission prediction in near real time [13].

While AI has proven successful in developing triage and
prediction models, its solutions are often black box models,
limiting model interpretation [25] and clinical adoption [26].
Consequently, efforts have been made to develop sparse
predictive models by leveraging machine learning and
conventional statistical analysis. Ustun and Rudin [27,28]
proposed Supersparse Linear Integer Model–based methods for
developing interpretable scoring systems. Xie et al [29]
developed the interpretable machine learning–based AutoScore
framework and used it to derive the score for emergency risk
prediction to estimate the probability of mortality during an
inpatient stay [30].

Objective
By leveraging large-scale electronic health records (EHRs) and
machine learning, we intend to create an innovative, dynamic,
and interpretable System for Emergency Risk Triage (SERT)
for risk stratification in the ED. This protocol describes the
detailed data collection procedures, data manipulation, and
predictive modelling to accomplish our goals. In particular, we
will employ the AutoScore framework to construct a dynamic
SERT for risk assessment at multiple decision points in the ED.
Our solution will also be compared with traditional clinical
triage tools and black box machine learning algorithms.

Methods

Study Setting
This is a large-scale, retrospective, single-center study conducted
in Singapore. As a city-state in Southeast Asia with an
approximately 5.4 million population, Singapore provides
affordable health care through partial subsidies and co-payments.
The study site, Singapore General Hospital, is Singapore’s
largest and oldest tertiary referral hospital, with 1700 inpatient
beds and over 30 clinical specialties. Each year, its ED sees
more than 120,000 visits and admits 36,000 patients for inpatient
care [16,31].

At public hospitals in Singapore, patients visiting EDs are
triaged based on their symptoms according to the national PACS
[32]. PACS-1 refers to patients who are seriously ill and require
immediate medical care, PACS-2 refers to nonambulant patients
who do not appear to be at risk of collapse, PACS-3 refers to
ambulant patients, and PACS-4 refers to nonemergency cases.
An initial triage is often recommended and used to identify
patients who are more acutely ill and need immediate attention.
As soon as resuscitation is required, the patient is taken directly
to the resuscitation area. Otherwise, the patient will be directed
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either to a critical care area or a waiting area, depending on the
patient’s condition.

Study Cohort and Design
The flowchart of the entire project is shown in Figure 1. In the
extracted data set, there are 3 primary identifiers: “ED Case
No,” “Admission Case No,” and “Patient ID,” to represent the
unique ED visit, the admission case, and the patient,
respectively. Figure 2 illustrates how variables are constructed

from and linked to these 3 identifiers. By consolidating the
selected variables, a master data set will be created. Afterwards,
the constructed master data set will be processed with outlier
removal and missing value handling. The interpretable machine
learning framework will then be implemented, and the models
will be evaluated and compared with other baseline approaches,
including traditional clinical scores, machine learning, and deep
learning.

Figure 1. Flowchart of the study design. EHR: electronic health record.

Figure 2. Illustration of the data linkage process of raw data tables through 3 primary identifiers. BP: blood pressure; ID: identification; ICD: International
Classification of Diseases; ED: emergency department; ICU: intensive care unit; HDU: high dependency unit; SpO2: peripheral oxygen saturation;
FiO2: fraction of inspired oxygen.

Singapore Health Services’ Centralized Institutional Review
Board approved this study (CIRB Ref: 2021/2122), and a waiver
of consent was granted to collect and analyze EHRs.

Data Source and Extraction
Study subjects have been drawn from the hospital’s EHRs using
the SingHealth-IHiS Electronic Health Intelligence System,
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which combines data from multiple clinical, operational, and
finance data sources [33]. Before analysis, all data, including
the 3 primary identifiers, have been de-identified to ensure that
they are sufficiently anonymous. Records of deaths are obtained
from the national death registry and are matched to specific
patients in our database. Relevant variables are extracted from
the beginning of the ED visits until the end of the patient’s
journey. Moreover, patients’medical histories are extracted and
matched for each unique patient through “Patient ID.” The
extracted data were saved in multiple CSV files for subsequent
processing and analysis.

Data Cleaning and Preprocessing
Data extracted from EHRs may contain many erroneous entries,
as the EHRs are designed for clinical use and not explicitly
modified for research purposes. This results in a lot of noise,
missing values, outliers, and duplicate or incorrect records due
to system problems or clerical errors. These issues will be
addressed in several ways. First, wholly duplicated entries will
be removed. Second, if the vital signs or laboratory test results
are outside the normal range, they are considered outliers. All
outliers are marked as missing values and are handled by
appropriate imputation methods (eg, the mean or median value
imputation based on the training data set). Third, a descriptive
analysis will be conducted to determine whether the overall
percentage and number are within a reasonable range.

Variable Construction
Candidate variables have been identified based on expert
opinions as well as relevant literature [18,30,34-36]. Moreover,
we have sought input from clinicians and informaticians familiar
with the raw data to determine which features are feasible to
extract and construct from the sources. The general rationale is
to include all ED-relevant variables of high quality. Therefore,
irrelevant, repeated, or largely missing variables will be
excluded. For time-series data (such as laboratory test results
and vital signs), the first, last, and average measurements are
extracted and constructed for each ED episode. Past health care
utilization will be derived per the patient’s medical history.

Table 1 presents a list of high-level constructed variables. These
variables are classified into 6 main categories depending on the
time frame during which the variables could be collected: past
medical history, ED triage, ED disposition, within the first 24
hours of inpatient stay, inpatient discharge, and after inpatient
discharge. Variables of patient data include demographics,
comorbidities, drug history, presenting vital signs, essential
laboratory results, and treatments administered in the ED. There
are also nonpatient variables such as ED waiting time from
triage to consultation, ED boarding time (from consultation to
ED disposition), patient load in the ED (number of other patients
registered in the ED at that time), time of the day, and day of
the week.

Outcomes
The clinical outcomes in this study include the following adverse
events experienced by patients during their inpatient stay:

1. Admission: A hospital admission following an ED visit
[37-39]. Each ED attendance is classified as admission or
discharge according to the clinical decision made. As a
result, patients who left before a decision could be made
are excluded rather than considered discharged.

2. Inpatient death: A clinically certified death of a patient
admitted to the hospital and who died during the
hospitalization.

3. 2/7/30-day mortality: A clinically certified death of an
admitted patient that occurred 2/7/30 days after the ED visit
regardless of the place of death.

4. ICU transfer: Identified using the hospital’s admission,
transfer, and discharge database. Whenever a patient had
more than one transfer from ward to ICU, only the data
before the first transfer were included.

5. Cardiac arrest: Defined as the loss of a palpable pulse with
attempted resuscitation in the ward.

6. Prolonged hospital length of stay: Defined as 21 days or
more for the hospital stay.
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Table 1. List of the high-level constructed variables in the master data set, along with their sources and categories.

High-level variables extractedSource tableSubcategoryCategory

Patient history

Count of ED visits, emergency admissions, surgeries, ICUb or HDUc

transfer in the patient’s history (past 30/90/180/365 days)
Inpatient movement, EDa

root table

Health care utilization
summary

Charlson Comorbidity Index (17 variables; chronic disease), Elixhauser
Comorbidity Index (30 variables)

Diagnosis historyComorbidities

Information collected at triage station

Age, gender, race, nationality, postal codeED root tableDemographics

Mode of arrival, high priority (chest pain/suspected stroke case), fever
or not

ED triageED-prehospital

Triage waiting time, triage class (Patient Acuity Category Scale system),
time of the day (midnight or not), day of the week (weekend or not)

ED triageED–triage information

Pulse, respiration, SpO2
d, systolic BPe, diastolic BP, temperatureED vital signsTriage vital signs

Information collected at ED disposition

Vital measurement frequency and major ED vital readings: pulse, res-
piration, fraction of inspired oxygen, SpO2, systolic BP, diastolic BP,

ED vital signsED vital signs

temperature, pain level scale, Glasgow coma scale, alert (extracted
from physical notes)

Laboratory measurement frequency and major laboratory test results:
potassium, creatinine, sodium, bicarbonate, albumin, creatine kinase-

ED laboratoryED laboratory

MB (mass), creatine kinase, prothrombin time, N-terminal pro–B-type
natriuretic peptide, C-reactive protein

Services provider, consultation waiting time, ED location, length of
consultation, resuscitation, major emergency surgeries, pre-selected
major ordering

ED consultation, ED treat-
ment

ED consultation and treat-
ment

Major allergy types and reasons, severityED allergyED allergy

Disposition type, major primary diagnosis, secondary diagnosis (eg,
trauma)

ED disposition, ED diagno-
sis

ED disposition and diagno-
sis

Admissions, mortality within ED, direct transfer to ICUED disposition, ED root ta-
ble

Outcomes

Information collected within the first 24 hours of inpatient stay

ICU or HDU admission, ward class, duration of ICU or HDU stay,
hospital departments, surgeries

Inpatient movementInpatient stay patient flow

Pulse, respiration, SpO2, systolic BP, diastolic BP, temperature, Glas-
gow coma scale, height, weight, BMI

Inpatient vital signsInpatient vital

Laboratory measurement frequency and major laboratory test results:
albumin, potassium, creatinine, sodium, bicarbonate, creatine kinase,

Inpatient laboratoryInpatient laboratory

creatine kinase_MB (mass), C-reactive protein, prothrombin time,
procalcitonin, blood PH, glycated hemoglobin A1c, triglycerides,
cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein
cholesterol

Major medication prescription and orderInpatient treatment and or-
der

Inpatient treatment

Information collected at discharge

Count of ED visits, ED admissions, surgeries, ICU or HDU admissions
last year

Inpatient movementHealth care utilization
summary

Primary discharge diagnosis, discharge location, length of stayDischarge diagnosisDischarge information

ICU transfer, inpatient mortality, cardiac arrest, prolonged hospital
length of stay

Inpatient movement, dis-
charge diagnosis

Outcomes

Information collected after discharge

2/7/30-day mortality, emergency readmission, ED revisitED root tableOutcomes
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aED: emergency department.
bICU: intensive care unit.
cHDU: high dependency unit.
dSpO2: peripheral oxygen saturation.
eBP: blood pressure.

Predictive Modelling for Clinical Decision Making
In this study, we will develop and validate a novel interpretable
triage system for risk stratification of patients in the ED. Our
proposed solution will be compared with baseline risk prediction
tools such as traditional clinical scores and black box machine
learning models. The extracted data set will be split into training,
validation, and testing sets to build and validate the predictive
models. The ED visit episodes from January 1, 2008, to
December 31, 2018, will be randomly divided into 2
non-overlapping cohorts: a training cohort (80%) and a
validation cohort (20%). The ED visits dated in 2019 are
assigned to one testing cohort, while those dated in 2020 are
assigned to a second testing cohort covering the period of the
COVID-19 pandemic [40,41]. Using this sequential testing
design, we will be able to test whether the population shift and
the COVID-19 pandemic would impact model performance
[42]. Further details are presented below.

Proposed Method: Interpretable SERT
SERT consists of 3 scoring algorithms, each tailored to its
application at different time points in the ED. On arrival at the
triage station, SERT-1 is used to estimate patients’ likelihood
of admission (inpatient and ICU) and 2-day mortality. SERT-1
is intended to assess the patient’s immediate urgency based on
basic patient information, simple vital measurements, and
medical histories readily available during triage. While in the
ED, SERT-2 predicts patients’ admission (inpatient and ICU)
and 2/7-day mortality using a variety of variables, including
laboratory test results, vital signs, ED treatment, diagnosis, and
some administrative information. As an extension of the SERT-1
algorithm, SERT-2 incorporates additional variables obtained
during ED stay to better predict outcomes. On admission,
SERT-3 predicts the likelihood of 7/30-day mortality, ICU
transfer, and prolonged length of stay using variables collected
in the ED and during the first 24 hours of inpatient stay. In
actual clinical implementation, in the case where a patient has
incomplete information, SERT will use imputation methods to
fill in the missing values before calculating the risk score. In
summary, SERT allows for a comprehensive risk assessment
and prediction in the ED in a dynamic manner.

The clinical risk-scoring models have been traditionally
developed in 2 ways: through expert opinions or consensus and
conventional cohort studies. However, both approaches are
labor-intensive and are not easy to update over time. Recently,
we developed an interpretable machine learning–based
automatic clinical score generator, AutoScore, as a practical
and universal solution for risk scoring [29]. Using the AutoScore
framework, users could seamlessly generate parsimonious risk
models (ie, point-based sparse risk scores), thereby supporting
automated machine learning solutions in health care [43].
AutoScore comprises 6 modules. In module 1, random forest
is used to rank variables in terms of their contribution to

modelling. Module 2 categorizes continuous variables to address
nonlinearity and facilitate the generation of point-based scores.
Module 3 computes scores based on a subset of variables and
logistic regression, while module 4 determines the optimal
number of variables based on a parsimony plot. Module 5
enables fine-tuning of the cut-off values for categorizing
continuous variables for preferable interpretation, and module
6 provides a final performance evaluation. AutoScore is used
to develop the 3 SERT scoring algorithms with the candidate
variables and the outcomes.

Baseline Methods: Traditional Clinical Scores
Several traditional clinical scores will be calculated for
performance comparison with the SERT scores. They are the
PACS triage system [32], Modified Early Warning Score [44],
National Early Warning Score [45], Rapid Acute Physiology
Score [46], Rapid Emergency Medicine Score [47], and Cardiac
Arrest Risk Triage [48].

Baseline Methods: Black Box Machine Learning Models
Additionally, several machine learning techniques will be
compared as baselines for predictive modelling. Of the many
machine learning algorithms, we will apply the following
popular ones as examples.

1. Random forest [49]: As the most commonly used tree-based
prediction tool, its R package “RandomForest” will be used
for model fitting. The parameters will be selected based on
recommendations made in previous literature [50,51], where
ntree= 100 and mtry is the principal square root of m (ntree
number of trees grown; mtry: number of variables randomly
sampled as candidates at each split).

2. Least absolute shrinkage and selection operator [52]: As a
penalized regression technique, it is another popular method
used in clinical modelling. It is a regression-based method
that employs a regularization process for variable selection
to increase the statistical model’s predictive accuracy and
interpretability. In our study, its regularization rate will be
optimized through 10-fold cross-validation.

3. Deep learning [53]: As a branch of the machine learning
field that uses deep neural networks, deep learning was
initially widely adopted for computer vision and image
understanding before being used for medical image analysis.
More recently, researchers have begun to explore deep
learning for EHR analysis [54,55]. We are particularly
interested in applying deep learning algorithms for adverse
event prediction, drawing on the rich sources of EHR data,
as described earlier. Using the PyTorch library, we will
construct a long short-term memory network [56]. In
addition, a multilayer perceptron [57] will be used in
conjunction with long short-term memory to learn
nontemporal data.
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Model Comparison and Performance Metrics
To evaluate the performance of all predictive models, receiver
operating characteristic (ROC) analysis will be conducted on
the 2 testing cohorts. An overall measure of predictive
performance is represented by the area under the ROC curve.
Moreover, we will calculate the measures of diagnostic
accuracy, such as sensitivity, specificity, positive predictive
value, and negative predictive value. These specific measures
are determined by setting thresholds on each ROC curve. To
achieve optimal balance between sensitivity and specificity, we
will select the cut-off points closest to the plot area’s upper-left
corner. The 95% CIs for each model or score will also be
reported and compared.

Statistical Analysis
We will perform data analysis using R version 4.0 (R Core
Team). When summarizing descriptive results, frequency and
percentages are reported for categorical variables, while means
and SDs are reported for continuous variables. For categorical
variables, the chi-square test or Fisher exact test will be used.
For numeric variables, the t test will be applied. Further,
univariable and multivariable logistic regressions will be used
to identify common risk factors associated with the outcomes.

Results

The raw data have been extracted, and we are currently linking
and cleaning the data. In the data extraction process, we included
all patients who visited the ED at Singapore General Hospital
between January 1, 2008, and December 31, 2020. Patients
under the age of 21 years were excluded. If the patients were
admitted through the corresponding ED visit, they would be
followed throughout their inpatient stay. The data set contains
more than 1.8 million ED visit episodes of over 810,000 unique
patients. Approximately 650,000 of these ED visits resulted in
subsequent hospitalizations. Our findings and modelling results
are expected to be published by 2022.

Discussion

This paper presents a protocol designed to leverage large-scale
EHRs and advanced machine learning techniques for risk
stratification and triage in the ED. Among numerous ED triage
and risk prediction scores and tools, our proposed SERT solution
is unique and innovative because of its dynamic nature and
modelling transparency. This project will build on the success
of our previous research on risk modelling with EHRs for
patients in the ED [14,16,30].

Significance
The identification of patients’ risk at an early stage allows for
better resource allocation. There is particular significance in
this point because the instability of vital signs may occur later
in the ward, leaving a limited time window for life-saving action
or decision making, which can be especially difficult in a busy
hospital. Patient groups at high risk should be identified earlier
in the ED and, if possible, flagged for more stringent monitoring.
Similarly, low-risk patients may require less intensive
monitoring and treatment, thereby saving hospital resources.

The SERT system that we propose has the potential to provide
a feasible solution. This system allows medical personnel to
assess patient risk at multiple decision points based on various
clinical and nonclinical factors. In a dynamic way, SERT
measures risk sequentially and in a manner that is perfectly
suited to actual clinical needs.

Strengths
First, this study uses a large set of EHR data over a 13-year
period, which contains comprehensive patient information. As
Singapore’s largest hospital, Singapore General Hospital
provides medical care to a wide range of patients throughout
the country; thus, its EHRs ensure good coverage for a large
population. Additionally, the longitudinal data allow us to
validate the SERT system using data before and after
COVID-19. Thus, we will have the opportunity to evaluate the
impact of the global pandemic on triage performance in the ED.
The insights gained from system evaluation could be used to
examine possible model adaptations in shifted clinical settings.

Second, the SERT triaging system we intend to develop will be
transparent and easily understandable. All 3 SERT scores are
parsimonious and point-based, as only the most significant
variables are considered in their formulation. Their formats
follow the same convention as widely used clinical scores such
as the National Early Warning Score and Modified Early
Warning Score, allowing for easy comprehension and quick
adoption. In contrast, black box machine learning models are
challenging to comprehend, making them inaccessible to
clinicians [25]. Although there are techniques for post hoc model
explanation, most machine learning models are not inherently
interpretable [25].

Third, this project aims to develop a dynamic system capable
of identifying risk strata at different decision points in the ED.
During the initial triage process and the patient’s stay in the
ED, SERT predicts the likelihood of inpatient and ICU
admissions. Whenever variables are altered, the scores can be
updated, making the risk assessment dynamic and practical. In
addition, SERT can make mortality predictions to assess the
likelihood of the worst outcomes for patients who will be
hospitalized.

Lastly, the simple form of the scores in SERT permits a variety
of implementation schemes. As an example, the actual
implementation can be as simple as a mobile app. Users may
input relevant information into the app, which will return a risk
score at the time of inquiry. The SERT scoring platform can
also be easily integrated into existing information technology
systems, which requires only simple calculations and therefore
little computing power. The application can be designed and
implemented in real time, similar to that seen in a recent study
in the United States [13].

Limitations and Future Plan
Although the study site is the largest hospital in the country,
the SERT system may not apply to international institutions
where EDs operate differently. We intend to conduct
cross-institutional validation of our system with both local and
international partners. In the case that our SERT system is not
feasible, the methods we use can easily be adapted to any
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context because AutoScore is a generic, universal scoring tool
that permits the creation of interpretable clinical scores. In
addition, we anticipate a sparse data set with numerous missing
values, particularly for comorbidities, medications, and time
series records of vitals and laboratory test results. To address
the issue of data sparsity, we will examine various data
imputation strategies and feature representation techniques.

Our future efforts will include identifying opportunities to
conduct a rigorously designed randomized trial to evaluate the
system. In the long-term, we hope to expand the evaluation to
a multicenter trial involving several countries.

Conclusions
Clinical decision making has widely benefited from the use of
machine learning techniques. However, the black box models

created by these methods prevent their use in actual clinical
practice. Our study aims to address this issue by proposing an
innovative SERT scoring system. An interpretable machine
learning–based AutoScore framework will be used to create a
series of 3 SERT scores that can be used in the medical setting
at various decision points throughout the patient’s journey. The
SERT system is notable for its dynamic nature and transparency.
If validated successfully, it will establish a standard for data
processing and modelling by utilizing large-scale EHRs and
interpretable machine learning. The proposed system may be
well suited to bridge the gap between advanced computation
and clinical applications.
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AI: artificial intelligence
ED: emergency department
EHR: electronic health record
ICU: intensive care unit
PACS: Patient Acuity Category Scale
ROC: receiver operating characteristic
SERT: System for Emergency Risk Triage
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