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Abstract

Background: When introducing artificial intelligence (AI) into clinical care, one of the main objectives is to improve workflow
efficiency because AI-based solutions are expected to take over or support routine tasks.

Objective: This study sought to synthesize the current knowledge base on how the use of AI technologies for medical imaging
affects efficiency and what facilitators or barriers moderating the impact of AI implementation have been reported.

Methods: In this systematic literature review, comprehensive literature searches will be performed in relevant electronic
databases, including PubMed/MEDLINE, Embase, PsycINFO, Web of Science, IEEE Xplore, and CENTRAL. Studies in English
and German published from 2000 onwards will be included. The following inclusion criteria will be applied: empirical studies
targeting the workflow integration or adoption of AI-based software in medical imaging used for diagnostic purposes in a health
care setting. The efficiency outcomes of interest include workflow adaptation, time to complete tasks, and workload. Two reviewers
will independently screen all retrieved records, full-text articles, and extract data. The study’s methodological quality will be
appraised using suitable tools. The findings will be described qualitatively, and a meta-analysis will be performed, if possible.
Furthermore, a narrative synthesis approach that focuses on work system factors affecting the integration of AI technologies
reported in eligible studies will be adopted.

Results: This review is anticipated to begin in September 2022 and will be completed in April 2023.

Conclusions: This systematic review and synthesis aims to summarize the existing knowledge on efficiency improvements in
medical imaging through the integration of AI into clinical workflows. Moreover, it will extract the facilitators and barriers of
the AI implementation process in clinical care settings. Therefore, our findings have implications for future clinical implementation
processes of AI-based solutions, with a particular focus on diagnostic procedures. This review is additionally expected to identify
research gaps regarding the focus on seamless workflow integration of novel technologies in clinical settings.

Trial Registration: PROSPERO CRD42022303439; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=303439

International Registered Report Identifier (IRRID): PRR1-10.2196/40485

(JMIR Res Protoc 2022;11(12):e40485) doi: 10.2196/40485
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Introduction

In medicine, vast changes in patient care because the
development of artificial intelligence (AI) is foreseen and
ongoing. AI is broadly defined as “the ability of computers to
perform tasks that normally require human intelligence” [1].
The introduction of these technologies in medicine promises to
improve the quality and safety in health care and accessibility
of medical expertise [1]. In the future, AI-human collaboration
can augment the ability of clinicians in health care delivery by
extracting relevant information from big data sets or performing
tasks with higher precision [2,3]. The areas where AI
technologies can assist the health care professionals are
manifold, for example, clinical diagnostics, decision-making,
or health care administration [2,4,5]. These technologies “can
be used as powerful tools and partners to enhance, extend, and
expand human capabilities, delivering the types of care patients
need, at the time and place they need them” [4].

When integrating AI applications into clinical practice, these
technologies will become part of highly complex sociotechnical
work systems. A model that considers the complexity and scope
of the clinical care work environment is the systems engineering
initiative for patient safety (SEIPS) 2.0 model [6]. On the basis
of SEIPS 2.0, the conceptual model of workflow integration
was developed to investigate the integration of a new technology
into clinical work processes, which has also been applied to the
integration of AI [7,8]. The model uses a sociotechnical system
approach and proposes that the whole work system and
workflow must be considered to evaluate the success of an AI
technology implementation [8].

Some work systems in medicine are faster or more suitable in
adopting AI-facilitated technologies. Especially, in specialties
that are largely image-based or process big amounts of data, AI
is expected to support physicians and improve patient care by
leading to more effective and efficient diagnostics [9,10]. Health
care providers in image-based medical disciplines handle a
growing amount of imaging data that require thorough
interpretation [11]. Moreover, the shortage of physicians in
radiology and a limited time available per image to meet the
current workload are common challenges [12]. The introduction
of AI into clinical practice holds a significant potential for
changes in clinicians’ duties and improvements such as
advancing routine tasks and freeing clinicians’ time for other
important tasks [1,2].

One of the main objectives in introducing AI into health care
is efficiency improvement because AI is expected to take over
not exceedingly complex but time-consuming tasks [1,13,14].
This goal can only be achieved if these technologies are
seamlessly integrated into the existing clinical workflow [15].
Therefore, a correlation between workflow integration and
usability outcomes, which include efficiency, effectiveness, and
satisfaction, has been proposed [7,16]. Efficiency is defined as
“resources used in relation to the results achieved. […] Typical
resources include time, human effort, costs and materials” [16].
Drawing upon the conceptual model of workflow integration,
efficiency-related clinician outcomes include the adaptation of
workflow, time to complete tasks, and workload [7,13].

To our knowledge, there is currently no systematic literature
review or structured synthesis available on whether the
integration of AI into the clinical workflow is associated with
improved efficiency. Therefore, comprehensive evidence is
necessary, concerning the major promise of freeing physician
time for other care activities, for example, direct patient care.
As the potential fields of application for AI technologies in
health care are diverse, we focus on AI used for medical imaging
to enable comparability. In this review, efficiency-related
clinician outcomes such as workflow adaptation, time to
complete tasks, and workload will be considered. Moreover,
reported facilitators or barriers for the successful integration of
AI into the workflow will be reviewed as “workflow integration
is crucial for making this kind of software [computer-aided
detection based on AI] a success” [13].

Our systematic review addresses the following question: how
do AI technologies influence the efficiency of workflows in
medical imaging?

Specifically, it aims to synthesize the literature base concerning
two specific objectives: (1) Identification and overall
aggregation of the effects of AI technology implementation on
efficiency-related clinician outcomes such as workflow
adaptation, time to complete tasks, and clinicians’ workload;
and (2) Description of the facilitators and barriers for the
integration of AI into the workflow of medical imaging.

Methods

Protocol Registration and Reporting Information
A systematic literature review will be performed to assess the
existing literature base and findings. The review’s protocol is
registered in the PROSPERO database (registration:
CRD42022303439). The protocol and subsequent systematic
review follow the reporting guidelines of preferred reporting
items for systematic review and meta-analysis protocols
statement. The checklist is included in Multimedia Appendix
1.

Eligibility Criteria and Study Design
Only original studies retrieved in full-text and published in
peer-reviewed journals will be included. The review will include
prospective observational and interventional studies such as
randomized controlled trials and nonrandomized studies of
interventions, for example, before–after studies and those with
an interrupted time series design.

Population
We will include studies conducted in health care facilities such
as hospitals, clinics, or outpatient settings using medical
imaging. All types of health care professionals, including all
age groups, sexes, professions, and qualifications, will be
included from the hospital and clinical care settings.

Exposure and Intervention
Studies targeting AI used for medical imaging and its effects
on health care professionals interacting with the technology will
be eligible for inclusion in this review, including a broad range
of AI solutions and clinical work settings. Regarding clinical
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medical imaging and diagnostics, AI can be defined as “any
computer system that can correctly interpret health data,
especially in its native form as observed by humans” [17]. AI
is often used in this context to identify or forecast a disease state
[17]. This review will exclusively focus on AI used for image
data interpretation for diagnostic purposes as well as medical
imaging [2]. Therefore, our working definition for AI used for
medical imaging activities as well as clinical diagnostics in this
study will be as follows: any computer system used to interpret
imaging data to make a diagnosis, support an image-based
clinical (intervention) task, or screen for a disease, a task
previously reserved for specialists.

Comparators
Studies comparing the use of AI in clinical diagnostics and
medical imaging with only human specialists will be the

comparison of interest; however, it is not a necessary condition
for studies to be included in this review.

Outcomes

Overview

Our central study objective is to investigate the impact of AI
solutions for clinical diagnostics on the workflow efficiency in
clinical care settings. On the basis of our theoretical background,
we will focus on three associated outcomes, namely, (1)
workflow adaptation, (2) workload, and (3) time-to-complete
tasks. In addition, we will systematically assess any facilitators
and barriers of AI integration into practice that are mentioned
in eligible studies (Figure 1).

Figure 1. Outcomes and measures of effect in this review. AI: artificial intelligence.

Workflow Adaptation

Workflow is defined as “the automation of a business process,
in whole or part, during which documents, information or tasks
are passed from one participant to another for action, according
to a set of procedural rules” [18]. This definition was given by
the workflow management coalition for business processes but
can be also used for clinical contexts [18]. Thus, we will
systematically evaluate the adaptation of the workflow in form
of any reported changes to the existing processes due to the
introduction of an AI technology.

Workload

Workload is defined as “the task demand of accomplishing
mission requirements for the human operator” [19,20].
Measuring and analyzing clinical workload is “dependent on
the tasks performed, the total time needed to complete the tasks
and other care delivery needs of patients” [20,21]. Workload
can be measured using objective measures, for example, cases
seen or physiological data, and subjective measures such as
questionnaires [22]. We will include all forms of quantitative
workload measurements that compare the use of an AI software
to traditional or previous methods such as pre-existing IT
solutions, tools, and technologies in the workplace.

Time to Complete Tasks

New technologies provide opportunities to reduce the time
needed to complete tasks, such as the time needed to examine
magnetic resonance (MR) or computed tomography images
[7,13]. Therefore, we will consider all reported measures on the
time-to-task completion or duration. Time to complete tasks
will be included if time changes on tasks of interest, such as
diagnostic reading of MR images or writing of patient reports,
are reported quantitatively with a comparison between the use
of AI and traditional methods.

Facilitators and Barriers

A facilitator is defined as any factor that promotes or expands
the integration or use of the AI system in the workflow. A barrier
is defined as any factor that limits or restricts the integration or
use of the AI system. The definitions were developed based on
a systematic review by Niezen and Mathijssen [23], and the
reported results will be classified according to these definitions.
We will extract and synthesize facilitators and barriers in a
narrative form using the Nonadoption, Abandonment, Scale-Up,
Spread, and Sustainability framework for novel medical
technologies in health care organizations [24].
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Publication Types
We will include studies published from January 2000 onward
because deep learning was developed in the early 2000s, which
is thus marked as the beginning of a new area of AI use in
medicine [25]. The article must be in English or German to be
eligible for this review.

Owing to our rigorous scope, we limit our review to
peer-reviewed journal articles and exclude dissertations, theses,
and conference proceedings; as for the latter, the peer-review
standards differ across conferences or disciplines. Furthermore,
research on AI in medicine not used for medical imaging or
diagnostics or research excluding the effects on the work system,
such as studies on human interaction with the technology, will
not be considered in this review.

Search Strategy
Literature will be retrieved through a structured literature search
in several electronic databases: MEDLINE (PubMed), Embase,
PsycINFO, Web of Science, IEEE Xplore, and Cochrane Central
Register of Controlled Trials. We will use further the snowball
method to identify literature not detected through electronic
databases, thus screening through the references of identified
studies and using Google Scholar. Table 1 outlines the search
strategy, following the PICO framework. Because we have
decided that comparator is not a necessary condition to be
included in this review, we did not list it in the search strategy
(see eligibility criteria above). To expand the list of search terms,
a preliminary search will be performed before the main search.

Table 1. Search strategy according to the PICO framework.

Search termConnectorClassification

“hospital” OR “clinic” OR “healthcare” OR “health care delivery” OR “clinical care” OR “medical” OR physician*
OR clinician* OR doctor* OR nurse* OR “health care professional” OR “patient care” OR patient* OR surg* OR
“oncology” OR “radiology” OR “health information”

—aPopulation

“artificial intelligence” OR “machine intelligence” OR “machine learning” OR “deep learning” OR “neural network”
OR “natural language processing” OR “AI ” OR “automated image recognition” OR “decision-support” OR “AI
application*”

ANDIntervention

“adoption” OR “deploy*” OR “implementation” OR “integration”ANDIntervention

diagnos* OR “Magnetic Resonance Imaging” OR MRI OR “computer tomography” OR imag* OR detect* OR
“data interpretation” OR “information system*” OR “health information technology*” OR “health IT*” OR “medical
informatics” OR “electronic health record*” OR “medical record*” OR “patient data”

ANDIntervention

“workload” OR “work reduction” OR load* OR “cognitive load” OR demand* OR time* OR stress* OR “satisfaction”
OR “usability” OR “workflow” OR efficienc* OR “work system” OR “work adaptation” OR “turnaround” OR
“clinician outcome” OR “performance”

ANDOutcomes

aNone.

Screening and Selection Procedure
All retrieved articles will be imported into the software Zotero,
an open-source reference management software [26]. For title
and abstract screening, Rayyan, a web application for an initial
title and abstract screening, will be used [27,28]. In the first
step, the titles and abstracts will be independently screened by
2 reviewers who will undergo training to increase interrater
agreement. In case of disagreement, a third researcher from the
team will be consulted to solve the conflict in a discussion. If
the disagreement cannot be solved through obtaining consensus,
the 3 researchers will solve the conflict democratically, that is,
majority vote. In the second step, full texts of all eligible
publications will be retrieved. These will also be screened by
2 reviewers, and potential conflicts on whether the articles
should be included will be resolved in a discussion moderated
by a third member of the study team. Studies that are excluded
in the process will be recorded. A flow diagram presenting the
study selection process will be prepared, following the PRISMA
(Preferred Reporting Items for Systematic Reviews and

Meta-Analyses) 2020 flow diagram for new systematic reviews,
which included searches of databases, registers, and other
sources [29].

Data Collection Procedure
The study data will be extracted by 1 author and imported into
MS Excel (Microsoft Corp). The study data contain details on
study characteristics, sample, setting, type of intervention, type
and assessment of outcomes, statistical analyses, reported
results, moderators or control of confounders, and further
information of interest (Textbox 1). The studies and extracted
data will be checked at random by another reviewer from the
study team. To obtain an agreement on relevant data to be
extracted, data from the first 5 studies will be extracted by both
reviewers, and a guideline for data extraction will be developed.
The extracted data will be divided into several main categories.
If any information is missing, the authors of that particular study
will be contacted for further details. In case of multiple
publications on 1 study, only the key publication will be
included.
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Textbox 1. Main categories for data to be extracted.

1. Study characteristics

• Authors

• Year of publication

• Location

• Study design

2. Sample

• Sample size

• Participants: demographics and professional characteristics

3. Setting

• Type of clinic

• Medical specialty

• Task

4. Type of intervention

• Artificial intelligence technology (category, reliability, and source)

5. Type and assessment of outcomes

• Workflow adaptation, workload, and times other reported outcome variables

• Facilitators and barriers (if reported)

• Sources of outcomes

• Assessment method (eg, interview, questionnaire, and observation)

6. Statistical analyses

• Types of statistical methods and analyses

• Means and variance metrics of outcomes (eg, standard deviations and confidence intervals)

7. Reported results

• Quantitative results

• Coefficients (β, γ) and measures of strength of association between artificial intelligence and changes in outcome variables

• Effect sizes (if reported or calculable)

• P values

• Qualitative results

• Named facilitators and barriers

• Any reported analysis

8. Moderators or control of confounders

• Potential moderators or confounding variables (if reported)

9. Further information of potential interest

• Further information, for example, on limitations

Study Appraisal and Risk of Bias (Quality) Assessment
To assess the methodological quality of the included studies, a
standardized risk of bias assessment will be performed. Three
established tools to assess the risk of bias, applied by two
independent reviewers, will be used. Cochrane Risk of Bias

Tool (Rob2) [30] will be used for randomized controlled trials.
For nonrandomized studies, the risk of bias in nonrandomized
studies of interventions tool [31] will be used. These tools
address different sources of bias, including the steps from
selection to reporting. For observational studies, a checklist of
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quality of reporting of observational longitudinal research [32]
will be used. In case of disagreement, a third reviewer will be
consulted until consensus is achieved.

Strategy for Data Synthesis
First, we will qualitatively describe the overall sample and
summarize the information extracted from each study. We will
then provide an overview concerning the classification in our
main categories (Textbox 1). The results of the risk of bias
assessment will be provided in a narrative and tabular format.
If an adequate set of studies of 5 or more studies is found eligible
and the homogeneity level allows, we will perform a
meta-analysis that reviews the effects of the introduction of AI
on efficiency-associated outcomes. We will quantitatively
synthesize data from the retrieved studies using the metafor
package in R (R Core Team, R Foundation for Statistical
Computing), which contains a set of functions for calculating
meta-analyses such as effect-size calculation or model fitting
to the data [33]. As we expect a level of heterogeneity of effects
in the included studies, a random effects model will be used to
estimate the average effect across studies. The heterogeneity
across the included studies will be assessed using the Cochran

Q test [34] and I2 statistic [35]. If the number of studies (at least
5 studies per group) and heterogeneity among them allow,
subgroup analyses concerning specific characteristics within
our eligibility criteria (ie, participants’demographics, particular
work settings, outcomes, study designs, and quality) will be
performed.

If a meta-analysis is not possible, the results will be summarized
in a narrative form and will also be presented in a tabular format.
Regardless of the possibility of a meta-analysis, the results will
be presented graphically to summarize the retrieved information
in a user-friendly manner. We will also adopt a narrative
synthesis approach for our additional outcomes, namely,
facilitators and barriers. The narrative synthesis will be
consistent with that of Strohm et al [36] who conducted an
interview study on the factors facilitating and hindering the
implementation of AI in radiology. They used the nonadoption,
abandonment, scale-up, spread, and sustainability framework
for new medical technologies in health care organizations, which
will be also used in our data analysis [24,36].

Meta-biases
Regarding the potential sources of meta-bias (eg, publication
bias across studies and selective reporting) in the results of the
review and meta-analysis, we plan to create a funnel plot, which
plots study size against the reported effect size. If a publication
bias occurs, the resulting scatterplot is asymmetric with more
studies showing a positive than a negative result [37]. We will
include at least 10 studies (if possible) to check for small-study
effects [38-40]. Additionally, we will use the critical appraisal
tool for systematic reviews on randomized or nonrandomized
studies of health care interventions AMSTAR-2, which consists
of 16 items assessing the quality of conduct of our systematic
review [41].

Confidence in Cumulative Evidence
The strength of the body of evidence will be assessed by using
the Grading of Recommendations Assessment, Development

and Evaluation, a system for rating the quality of evidence and
strength of recommendations [42,43]. This rating system has
been successfully used in clinical medicine, public health, and
policy making, and more recently, in occupational and
environmental health [44]. It supports the authors in rating their
confidence whether the estimate of an effect is correct. In
systematic reviews, the quality of evidence is rated separately
for each outcome on a scale from high to very low [45].

Results

The search and screening for the systematic literature review
are anticipated to be finished in October 2022. Data extraction,
quality appraisal, and subsequent data synthesis will begin in
November 2022. The review is expected to be completed by
April 2023, and the study results will be published in 2023.

Discussion

Principal Findings
We propose a protocol for a systematic review on the influence
of AI technologies on workflow efficiency in clinical care
settings. Our review will summarize the existing literature and
provide a comprehensive overview on the work system effects
of AI technologies in clinical care. This will focus on efficiency
outcomes as these are promising factors in the integration of
AI into clinical practice. To our knowledge, no systematic
overview has been yet conducted on this subject.

The focus in our review will be on workflow and clinician
outcomes in imaged-based disciplines as in these fields AI
technologies are predominantly and continuously integrated
into clinical care practice. Presumably, in the future, almost
every medical specialty will interact with AI-based technologies
because of a broad range of potential AI application fields in
this domain [46]. Contrary to the popular belief that AI will
replace radiologists or other health care staff, the future of
medicine will rather depend on optimized interactions between
AI and humans, enabling AI systems to augment the physician’s
performance [12,47]. AI is foreseen to change clinicians’ work
environments and affect their work processes such as task flow
and workload [3,46]. Notwithstanding the various promises
being proposed with the introduction of AI in real-world care
environments, current evidence concerning its effects on
clinicians’ workflow and practices is missing. Our review will
therefore provide valuable insights into the existing evidence
base on the immediate effects of AI implementation on work
systems and clinician outcomes. Thus, our research synthesis
will facilitate understanding if the current AI technologies live
up to the expectation of significantly supporting clinicians in
their work [48].

Comparison to Previous Research
Notably, in light of the current gap between the broad utilization
of AI for research purposes and few AI applications being
applied in routine patient care, facilitating AI implementation
and adoption into clinical care has become essential. Although
academic publications on AI solutions for medical imaging,
diagnostic, and therapeutic contexts are numerous, only a few
real-world solutions have been yet officially approved and
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implemented in the health care sector [49]. Furthermore, we
expect that only a fraction of these solutions has been
systematically evaluated regarding their impact on clinician
outcomes or workflow integration. This expectation is supported
by the review of Asan and Choudhury [3] who demanded
systematic research that addresses AI’s impact on clinical
workflow and usability with emphasis on the importance of
human factor research.

Because the seamless integration of AI is crucial for unfolding
its potential in clinical practice, our review will specifically
address the facilitators and barriers of implementation practices
elicited from the retrieved studies [13]. The consideration of
facilitating and hindering factors of AI adoption is an essential
step in gaining a more detailed understanding of how AI
implementation can be optimized in hospital and other clinical
care settings. A study suggests that various process factors affect
seamless AI adoption into hospital practices, such as a perceived
high added value or hospital-wide innovation strategies,
technical performance, and well-structured implementation
processes [36]. We acknowledge that we will only extract the
process characteristics from studies found eligible regarding
clinician outcomes. Nevertheless, our synthesis approach, which
draws upon a previously established framework, allows for a
comprehensive understanding of AI implementation experiences
and will expand the existing preliminary findings [36].

Limitations
Our review will focus on AI used for medical imaging used for
diagnostic purposes. AI applications offer a great potential for
image-based specialties and address a pressing issue, namely,
the vastly growing amount of imaging data that need thorough
interpretation [15,47]. Significant technological advancements
have been made recently through the development of AI
solutions and their application into clinical practice [1,50,51].
We solely focus on this clinical domain and a specific clinical
task (eg, image-based tasks and diagnostics) to strengthen
internal and external validity as well as to allow comparability
across the work settings included. Nonetheless, we capture a
medical field with the most extensive availability of AI
technologies already integrated into clinical routine practices.

The algorithms or features used in the AI technologies included
in this review might be different; however, this is not of central
interest for answering our research question. We will not assess
the quality or clinical effectiveness of the AI systems because
this is covered by numerous systematic reviews with regard to
the specific task for which comparable AI solutions were
developed, such as in the reviews by Kunze et al [52] or
Chidambaram et al [53]. Therefore, no specific conclusions
regarding the technologies or characteristics of AI will be drawn
as we will focus solely on the work system effects.

To achieve our goal of summarizing the existing literature on
the impact of AI implementation on clinician outcomes, we will
establish a rigorous list of exclusion criteria regarding study
design, setting, and population. Therefore, conclusions will only
be drawn for the specific setting of work environments where

AI is used for image-based and diagnostic purposes. We
acknowledge that this may result in limited generalizability of
our results. In future research, it would be valuable to compare
the workflow integration of AI across different health care
settings such as ambulant care settings or nursing facilities. Our
review approach may be an exemplary approach on how to
systematically aggregate research findings on AI workflow
integration, which can be transferred to other health care sectors
and clinical domains.

Our outcome variables of interest draw upon the conceptual
model of workflow integration [7]. Our key focus will be on
clinician outcomes, workflow, and efficiency—the key issues
for AI introduction. Notably, we will only address clinician
outcomes named in the model, namely, those related to workload
and efficiency. For future research, it would be valuable to
include further outcomes such as perceived use and acceptance.
Furthermore, it would be interesting to augment research with
concepts such as trust and technology characteristics as these
are important determinants of AI adoption [36,54,55].

Regarding our key concepts extracted from the conceptual model
of workflow integration [7], there is substantial heterogeneity
of applicable terms in the literature; for example, time to
complete tasks is a collective term for measures such as
physician’s reading times [13] or time undertaken to review an
image [56]. Moreover, some concepts used in this literature
review, such as the use of AI in clinical diagnostics or
facilitators and barriers for AI implementation, do not have a
consistent definition in the literature. Therefore, we propose
working definitions on the background of existing research
[2,19,23]. Nonetheless, we acknowledge that key terms might
be conceived differently in other contexts or publications. Thus,
we limited the deviation from previous studies by conducting
a pilot search and expanding our search terms to include
common variants of key concepts.

Conclusions
Our review and meta-analysis or systematic narrative data
analysis will allow first systematic conclusions on how AI for
medical and diagnostic imaging affects clinician efficiency
outcomes. We expect to provide a structured overview and
systematic synthesis of the current literature. Thus, the findings
of our review are expected to expand the existing knowledge
on how AI affects clinical efficiency in medical imaging.
Particularly, by providing a quality appraisal of the included
studies, we will identify shortcomings of the current research.
Moreover, our review will help to recognize research gaps
regarding the seamless workflow integration of novel
technologies into clinical settings. Our findings will eventually
also provide guidance on provider-centered design and
application of AI-based solutions in clinical settings, with
potential improvements in clinical safety and performance.
Furthermore, our consideration of the facilitators and barriers
of AI implementation will provide an evidence-based foundation
for hospital leadership and practitioners to successfully manage
AI implementation in patient care.
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