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Abstract

Background: Asthma and chronic obstructive pulmonary disease (COPD) impose a heavy burden on health care. Approximately
one-fourth of patients with asthma and patients with COPD are prone to exacerbations, which can be greatly reduced by preventive
care via integrated disease management that has a limited service capacity. To do this well, a predictive model for proneness to
exacerbation is required, but no such model exists. It would be suboptimal to build such models using the current model building
approach for asthma and COPD, which has 2 gaps due to rarely factoring in temporal features showing early health changes and
general directions. First, existing models for other asthma and COPD outcomes rarely use more advanced temporal features, such
as the slope of the number of days to albuterol refill, and are inaccurate. Second, existing models seldom show the reason a patient
is deemed high risk and the potential interventions to reduce the risk, making already occupied clinicians expend more time on
chart review and overlook suitable interventions. Regular automatic explanation methods cannot deal with temporal data and
address this issue well.

Objective: To enable more patients with asthma and patients with COPD to obtain suitable and timely care to avoid exacerbations,
we aim to implement comprehensible computational methods to accurately predict proneness to exacerbation and recommend
customized interventions.

Methods: We will use temporal features to accurately predict proneness to exacerbation, automatically find modifiable temporal
risk factors for every high-risk patient, and assess the impact of actionable warnings on clinicians’ decisions to use integrated
disease management to prevent proneness to exacerbation.

Results: We have obtained most of the clinical and administrative data of patients with asthma from 3 prominent American
health care systems. We are retrieving other clinical and administrative data, mostly of patients with COPD, needed for the study.
We intend to complete the study in 6 years.

Conclusions: Our results will help make asthma and COPD care more proactive, effective, and efficient, improving outcomes
and saving resources.
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Introduction

The Gap in Identifying Patients With
Exacerbation-Prone Asthma and Patients With
Exacerbation-Prone Chronic Obstructive Pulmonary
Disease for Preventive Care

Management of Asthma and Chronic Obstructive
Pulmonary Disease
In the United States, 9.6% of children and 8% of adults have
asthma, leading to 1.8 million emergency department visits,
493,000 inpatient stays, US $56 billion in cost, and 3630 deaths
every year [1-4]. Approximately 6.5% of adults have chronic
obstructive pulmonary disease (COPD), the third leading cause
of death, leading to 1.5 million emergency department visits,
0.7 million inpatient stays, and US $32 billion in cost every
year [5]. One main goal in managing patients with asthma and

patients with COPD is to reduce exacerbations, which expend
approximately 40% to 75% of their total care cost [6-8] and
accelerate their lung function decline [9]. Approximately
one-fourth of patients with asthma and patients with COPD are
prone to exacerbation [10-14], meaning that a patient has (1)
≥2 systemic corticosteroid orders in a year or (2) ≥1 emergency
department visit or inpatient stay for asthma or COPD with
systemic corticosteroid treatment in a year (Figure 1) [10,13,15].
These patients incur approximately two-thirds of all
exacerbations [12,13,16] and experience a low quality of life;
sleep disturbance; limitations of daily activities impacting
independence, relationships, family life, socialization, and
career; anxiety; distress; missed work with lost earnings; missed
school; high care costs; high hospital use; intubation; and death
[10,17-19]. Even a brief use of systemic corticosteroids to treat
exacerbations can greatly increase the risk of venous
thromboembolism, sepsis, and fracture [20,21].

Figure 1. Determining when a patient with asthma or chronic obstructive pulmonary disease becomes prone to exacerbation. COPD: chronic obstructive
pulmonary disease.

Many health care systems and health plans use predictive models
as the best method [22] to identify high-risk patients for
preventive care to improve outcomes and save resources [23-25].
For instance, this is the case with health plans in 9 of the 12
American metropolitan communities mentioned in the study by
Mays et al [26]. However, no model exists to predict proneness
to exacerbation, which only partly correlates with disease
severity [16]. Exacerbation-prone patients are currently
identified after exacerbations occur, making it too late to apply
integrated disease management (IDM) for preventing
exacerbations. IDM is defined as “a group of coherent
interventions, designed to prevent or manage 1 or more chronic
conditions using a community wide, systematic and structured
multidisciplinary approach potentially employing multiple
treatment modalities” [27]. IDM typically has several
components, such as self-management education, skills training,
care management, and structured follow-up [28,29]. Having a
limited service capacity [29-33], IDM can lower hospital use
by up to 40%; cut costs by up to 31%; greatly reduce symptoms;
and enhance treatment adherence, patient satisfaction, and
quality of life by 30%-60% [26,28-32,34-42]. Neither patient
registries nor dashboards are able to identify exacerbation-prone
patients before exacerbations occur and, thus, to apply IDM in
a timely manner. A patient registry tracks a given patient cohort

but cannot make predictions. Although many attributes are often
needed to achieve high prediction accuracy [43-45], a dashboard
tracks only a few attributes. To have prediction capability, a
dashboard needs to be supported by a predictive model in the
backend. Models for proneness to exacerbation are needed to
guide the use of IDM and to prevent exacerbations. This cannot
be done well with the current model building approach for other
asthma and COPD outcomes, which has 2 major gaps due to
the limited use of temporal features showing early health
changes and general directions [46-94]. Each temporal feature
is an independent variable computed on one or more longitudinal
attributes, such as the slope of pulmonary function last year,
the slope of BMI last year, the number of days in the previous
week during which the sulfur dioxide level was ≥4 parts per
million, and whether the patient’s filling frequency of oral
corticosteroid prescription increased over time. Although this
study focuses on exacerbation-prone asthma and COPD as use
cases, the proposed computing techniques and software can be
harnessed to forecast outcomes of other diseases such as
congestive heart failure and diabetes, with temporal features
such as the slopes of cardiac function and blood glucose level
over time.
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Gap 1: Low Prediction Accuracy
Existing models for predicting an individual asthma or COPD
patient’s health outcomes typically have low accuracy [46-94].
The systematic review by Loymans et al [52] and our review
[43] showed that for forecasting hospital use (emergency
department visits and inpatient stays) for asthma in patients
with asthma, each previous model, excluding the models of
Zein et al [58], has an area under the receiver operating
characteristic curve (AUC) within 0.61-0.81, a sensitivity within
25%-49%, and a positive predictive value within 4%-22%
[46-57]. The models of Zein et al [58] and our recent new
models [43-45] have similarly higher accuracy but are still not
good enough for aligning preventive care with the patients
needing it the most. The case with COPD is similar [59-94].

Existing models for predicting asthma and COPD outcomes
typically have low accuracy for several reasons:

1. Existing models use elementary temporal features such as
the count of inpatient stays and ever intubated last year, but
they rarely use more advanced temporal features such as
the slope of the number of days to albuterol refill showing
general directions. Many highly predictive temporal features
are yet to be identified or are unused. In 2018, Google used
all of the attributes in the electronic medical record along
with long short-term memory (LSTM) [95,96], one type of
deep neural network, to discover temporal features
automatically from longitudinal data [97]. This raised the
AUC by approximately +10% for projecting each of long
hospital stay, in-hospital mortality, and unanticipated
readmissions in 30 days [97]. Several other studies [98-100]
obtained similar results for various clinical prediction tasks.
This matches recent progress in areas such as video
classification, speech recognition, and natural language
processing, where temporal features LSTM automatically
discovered from data beat those that experts provided or
other temporal and sequential pattern mining methods
[101-104] mined from data. The LSTM model of Xiang et
al for predicting asthma outcome [57] had a low AUC of
0.7 because it used only 3 types of attributes and mostly
inpatient data without much outpatient data, not because
LSTM is ineffective.

2. Although >100 potential risk factors for poor outcomes in
asthma and COPD are known [50-52,105-112], a typical
previous model uses only a few (eg, ≤17) [46-57,59-93].
None of the published models adopt all established risk
factors contained in contemporary electronic medical
records [113].

3. Weather and air quality variables impact asthma and COPD
outcomes [114-117], but they are seldom used in existing
models.

Gap 2: No Information Given on the Reason Why a
Patient is Deemed High Risk and the Potential
Interventions to Reduce the Risk
To provide preventive care well, clinicians need to know the
reason a patient is deemed high risk and the potential
interventions to reduce the risk. Sophisticated predictive models,
including the bulk of machine learning models such as LSTM,
are black boxes and provide no such information, although

explanation is critical for users’ acceptance, satisfaction, trust,
and decision correctness [118-121]. Often, a patient’s clinical
records include numerous variables on many pages recorded
over multiple years [122]. As the model gives no explanation,
already occupied clinicians need to expend extra time on chart
review to identify the reasons. This is difficult and time
consuming. In fact, the black-box issue has been a major reason
for the slow adoption of machine learning in clinical practice,
despite machine learning often producing the highest prediction
accuracy among all predictive modeling methods [33,123-127].

A clinician can develop a care plan using subjective, variable
clinical judgment. However, this care plan often misses some
suitable interventions because of the following reasons:

1. Big practice variation, frequently by 1.6-5.6 times, shows
up across facilities, clinicians, and regions [128-135].

2. A patient can become high risk for many reasons, each
shown by a risk pattern given by a feature combination, for
example, the sulfur dioxide level was ≥4 parts per million
for ≥4 days in the previous week and the number of days
to albuterol refill rose over 12 months. Many features and
feature combinations exist. A clinician is a human, can
typically process ≤9 information items at once [136], and
can easily miss some key reasons for which the patient is
high risk. Outcomes can degrade if suitable interventions
are not used. Regular automatic explanation methods
[137-140] cannot deal with longitudinal data and address
this issue well.

Our Proposed Solutions
To enable more patients with asthma and patients with COPD
to obtain suitable and timely care to prevent exacerbations, we
will (1) use temporal features to develop the first set of models
to accurately predict exacerbation-prone asthma and COPD, (2)
automate finding modifiable temporal risk factors for every
high-risk patient, and (3) assess the impact of actionable
warnings on clinicians’ decisions to use IDM to prevent
proneness to exacerbation.

Innovation
We will develop new techniques to automate the extraction of
temporal features from longitudinal data and explain machine
learning predictions on longitudinal data. We will improve
preventive care, notably for asthma and COPD, by steering it
to the patients who need it more precisely and in a more timely
manner than the current risk modeling methods:

1. To the best of our knowledge, this study will construct the
first set of models to predict which patients with asthma
and which patients with COPD will be prone to
exacerbation. Currently, these patients are found after
exacerbations occur, making it too late to apply IDM for
preventing exacerbations. This is a major public health issue
[29,31,32]. Our models can improve IDM and guide its use
to avert exacerbations. Compared with the current model
building method for other asthma and COPD outcomes that
often produces low accuracy, our model building method
will lead to more accurate predictions.

2. To the best of our knowledge, this will be the first study to
extract comprehensible and predictive temporal features
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semiautomatically from longitudinal data without needing
any manually prespecified pattern template, which is
required by many sequential and temporal pattern mining
methods [102-104]. This helps raise the model accuracy
and reduce the effort required to construct clinically usable
models. At present, clinicians usually have to manually
identify such features to construct such models. However,
this is time consuming and difficult. Previous models for
asthma and COPD rarely use more advanced temporal
features, such as slope [46-94]. In addition, although current
deep neural network methods can automatically discover
temporal features, the discovered features are hidden in
neurons and are often incomprehensible, making it difficult
to explain the predictions [137,138].

3. To the best of our knowledge, this will be the first study to
automate giving rule-formed explanations for machine
learning predictions directly on longitudinal data. Clinicians
need explanations to understand the predictions and decide
IDM enrollment and interventions. Rule-formed
explanations are easier to comprehend and can better hint
at actionable interventions than other forms of automatic
explanations. Most automatic explanation methods
[137,138] for machine learning predictions cannot deal with
longitudinal data. Our previous automatic explanation
method [140-142] is no exception. It has 5 hyperparameters
whose effective values vary by modeling problem and data
set. A computing expert often requires several months to
perform many trials to find these values laboriously for a
data set. We will improve our previous method to deal with
longitudinal data and automatically and efficiently select
hyperparameter values; therefore, health care researchers
with limited computing expertise can use our method with
low overhead.

4. To the best of our knowledge, this will be the first study to
automate finding modifiable temporal risk factors and
recommending interventions on the basis of objective data,
making IDM more efficient and effective. At present,
clinicians rely on subjective, variable judgment to create
care plans manually and overlook some suitable
interventions for high-risk patients.

5. To the best of our knowledge, this will be the first study to
assess the impact of actionable warnings on clinicians’
decisions to use IDM to prevent proneness to exacerbation.

Methods

Computing Resources
We will conduct all experiments on a password-protected and
encrypted computer cluster hosted at the University of
Washington Medicine (UWM). With appropriate authorization
and using their university computers, all research team members
and test participants at UWM can remotely access this computer
cluster.

Data Sets
All data that will be used in this study are structured. We will
use clinical and administrative data stored in the enterprise data
warehouses of 3 prominent American health care systems:
UWM, Kaiser Permanente Southern California (KPSC), and

Intermountain Healthcare (IH). We will use >200 clinical and
administrative variables listed in our papers’ [43-45] appendices,
with differing names of the same concept in distinct electronic
medical record systems already manually matched by us. These
variables cover a wide range of aspects, such as patient
demographics, encounters, medications, laboratory tests,
diagnoses, procedures, vital signs, and allergies. We can form
the temporal features of most variables, which are longitudinal
with timestamps.

In Utah, IH is the largest health care system, with 24 hospitals
and 215 clinics. As in our previous work on asthma outcome
prediction [43-45], an IH data analyst will run Oracle database
queries to retrieve a deidentified IH data set (eg, shift dates,
replace identifiers, and replace ages that are ≥90 years) and use
Secure Shell (SSH) to encrypt it and transfer it to the
password-protected and encrypted computer cluster, where we
will perform analysis. The IH data set covers patient encounters
from 2005 to 2020. For the previous 5 years, data for children
cover >5000 pediatric patients with asthma (aged <18 years)
per year. Data for adults cover >14,000 adult patients with
asthma (aged ≥18 years) and >6000 adult patients with COPD
per year. IH expends many resources on data integrity and
accuracy. Owing to its large size and variable richness [143],
the data set offers many advantages for exploring the proposed
methods.

UWM and KPSC have similar strengths. In Washington, UWM
is the largest academic health care system, with 4 hospitals and
12 clinics for adults. A UWM data analyst will execute SQL
Server database queries to retrieve a deidentified UWM data
set (eg, shift dates, replace identifiers, and replace ages that are
≥90 years) and use SSH to encrypt it and transfer it to the
password-protected and encrypted computer cluster. The UWM
data set covers adult patient encounters from 2011 to 2020. For
the previous 5 years, data cover >12,000 adult patients with
asthma and >5000 adult patients with COPD per year.

In Southern California, KPSC is the largest integrated health
care system, with 15 hospitals and 231 clinics [144]. A KPSC
data analyst will run database queries to retrieve a deidentified
KPSC data set (eg, shift dates, replace identifiers, and replace
ages that are ≥90 years) and use SSH to encrypt it and transfer
it to the password-protected and encrypted computer cluster.
The KPSC data set covers patient encounters from 2009 to 2020.
For the previous 5 years, data for children cover >77,000
pediatric patients with asthma per year. Data for adults cover
>172,000 adult patients with asthma and >78,000 adult patients
with COPD per year.

In addition to the clinical and administrative data, we will adopt
11 weather and air quality variables that we have downloaded
from public sources [145,146]: daily mean particulate matter
≤2.5 μm in diameter, daily maximum 8-hour carbon monoxide,
daily mean particulate matter ≤10 μm in diameter, daily
maximum 8-hour ozone, daily maximum 1-hour nitrogen
dioxide, daily maximum 1-hour sulfur dioxide, hourly mean
precipitation, hourly mean relative humidity, hourly mean wind
speed, hourly mean temperature, and hourly mean dew point.
These variables were recorded over 16 years (2005-2020) by
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monitoring stations located in the areas covered by IH, UWM,
and KPSC.

The following discussion focuses on asthma. Whenever we refer
to asthma, the same applies to COPD.

Aim 1: Use Temporal Features to Accurately Predict
Exacerbation-Prone Asthma and COPD
We will extract comprehensible and predictive temporal features
semiautomatically from patient, weather, and air quality data
and construct models to predict proneness to exacerbation. Each
feature uses ≥1 raw variable. There is an almost infinite number
of possible features. Traits of pediatric patients’ parents and
other factors could also impact patient outcomes. Our goal is
not to test all possible useful features and obtain the theoretically
maximum possible prediction accuracy. Instead, we intend to
show that temporal features can be used to improve prediction
accuracy and IDM. We will create a separate model for every
disease and health care system pair. This study will focus on
associations, as is sufficient for decision support for IDM and
common with predictive modeling.

Data Preprocessing
All data sets will be converted into the Observational Medical
Outcomes Partnership (OMOP) common data model format
[147] and its linked standardized terminologies [148]. Much of
the UWM data are already in this format. IH and KPSC have
provided their data in an internal normalized format that is
similar to this format. We will expand the data model to include
patient, weather, and air quality variables that the original data
model misses but exist in our data sets. We will use the method
described in our paper [149] to choose the most pertinent
laboratory tests. To reduce the number of features, we will use
the Agency for Healthcare Research and Quality Clinical
Classifications Software system [150,151] to merge diseases,
use the Berenson-Eggers Type of Service system [152] to merge
procedures, and use the Hierarchical Ingredient Code 3 system
[153] to merge drugs. We will adopt the method used in our
previous work [43-45] to identify, correct, or delete invalid
values. To deal with missing values, we will test various
imputation techniques [154,155], such as the last observation
carried forward, replacement with mean values, and replacement
with median values, and use the technique that works the best.

The patient, weather, and air quality variables will be used. The
patient variables will cover standard variables studied in the
clinical predictive modeling literature [128,129,154], such as
diagnoses, and >100 known potential risk factors for poor

asthma outcomes listed in our papers [43-45,156]. One such
risk factor is the frequency of nighttime awakening recorded
on the validated Asthma Control Test questionnaire [157] in
the electronic medical record system. For weather and air quality
variables, we will perform inverse distance weighting spatial
interpolation [158] to compute their daily average values at the
patient’s residence zip code from their values at local monitoring
stations, as we and others did before for asthma outcome
prediction [159-161].

Asthma and COPD Cases and Outcomes
We will implement and test our method using (1) pediatric
asthma, (2) adult asthma, and (3) COPD. We will use our
previous method [44] adapted from the literature [47,162,163]
to identify patients with asthma. We deem a patient to have
asthma in a given year if the patient has ≥1 asthma diagnosis
code (International Classification of Diseases, Ninth Revision
[ICD-9] 493.x or International Classification of Diseases, Tenth
Revision [ICD-10] J45 and J46.x) in the year. The outcome is
whether the patient became prone to exacerbation (ie, had either
≥2 systemic corticosteroid orders or ≥1 emergency department
visit or inpatient stay with a principal diagnosis of asthma and
systemic corticosteroid treatment) in the following year [10,15].

We will use our previous method [164] adapted from the
literature [165-168] to identify patients with COPD. As shown
in Figure 2, we deem a patient to have COPD if the patient is
aged ≥40 years and fulfills any of the following 4 conditions:

1. An outpatient visit diagnosis code of COPD (ICD-9: 491.22,
491.21, 491.9, 491.8, 493.2x, 492.8, and 496; ICD-10: J42,
J41.8, J44.x, and J43.x), followed by ≥1 prescription of
long-acting muscarinic antagonists (aclidinium,
glycopyrrolate, tiotropium, and umeclidinium) within 6
months

2. ≥1 emergency department or ≥2 outpatient visit diagnosis
codes of COPD (ICD-9: 491.22, 491.21, 491.9, 491.8,
493.2x, 492.8, and 496; ICD-10: J42, J41.8, J44.x, and
J43.x)

3. ≥1 inpatient stay discharge with a principal diagnosis code
of COPD (ICD-9: 491.22, 491.21, 491.9, 491.8, 493.2x,
492.8, and 496; ICD-10: J42, J41.8, J44.x, and J43.x)

4. ≥1 inpatient stay discharge with a principal diagnosis code
of respiratory failure (ICD-9: 518.82, 518.81, 799.1, and
518.84; ICD-10: J96.0x, J80, J96.9x, J96.2x, and R09.2)
and a secondary diagnosis code of acute COPD exacerbation
(ICD-9: 491.22, 491.21, 493.22, and 493.21; ICD-10: J44.1
and J44.0) [164].
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Figure 2. Determining when a patient starts to have chronic obstructive pulmonary disease. COPD: chronic obstructive pulmonary disease.

The outcome is whether the patient became prone to
exacerbation (ie, had either ≥2 systemic corticosteroid orders
or ≥1 emergency department visit or inpatient stay with a
principal diagnosis of COPD and systemic corticosteroid
treatment) in the following year [13].

Extracting Temporal Features
We will adopt the method described in our design paper [149]
to extract comprehensible and predictive temporal features
semiautomatically from longitudinal data. In aim 1, we will use
the extracted features to construct the final predictive models.
In aim 2, we will use the extracted features to automate finding
modifiable temporal risk factors for every high-risk patient. The
main idea of our temporal feature extraction method is to build
a so-called multi-component LSTM deep neural network model
on longitudinal data, use a so-called exclusive group Lasso
(least absolute shrinkage and selection operator) regularization
method to restrict the number of attributes used in each
component LSTM network, and then perform visualization to
identify comprehensible temporal features from certain cell
vector elements in each component LSTM network. The final
step of using visualization to identify temporal features and
providing their definitions involves humans and is
semiautomatic. All other steps are automatic. Our temporal
feature extraction method is general and can be used for many
clinical applications. Our method has never been implemented
in computer code. In addition, some of its technical details are
not provided in our design paper [149]. In this study, we will
fill in all of the missing technical details and code and test this
method.

The Final Predictive Models in Aim 1
We will use the extracted temporal features, such as the slope
of the number of days to albuterol refill, to transform
longitudinal data into tabular data, producing 1 column per
temporal feature, and add static features. We will place no
artificial upper or lower bound and use as many features as
needed (likely several dozen to several hundred features based

on our previous experience [43-45]). Our data are relatively
balanced [10-14]. We will harness Weka [169], a major
open-source machine learning toolkit, to create the final models
in aim 1. As aim 2 shows, these models are suitable for
automatic explanations. Weka implements many classic machine
learning algorithms and feature selection techniques. We will
adopt supervised algorithms and our previous method [170] to
automate selection of the machine learning algorithm, feature
selection technique, and hyperparameter values out of all
applicable ones. When needed, we will manually perform
fine-tuning.

We will use past data up to the prediction time point to construct
5 sets of models, 1 set for each of 5 combinations: pediatric
asthma at IH and KPSC and adult asthma at IH, UWM, and
KPSC. UWM has rather incomplete data on many of its patients,
partly because most of its patients are referred from elsewhere.
To reduce the impact of incomplete data on model performance,
we will harness our previous constraint-based method [164,171]
to identify the patients apt to get most of their care from UWM,
and we will construct models for them. As mentioned earlier,
we will also implement and test our method on COPD.

Evaluating Model Performance and Power Analysis
The discussion below focuses on IH data. The cases with UWM
and KPSC data are analogous. As we need to calculate outcomes
in the following year, we effectively have 15 years of IH data
over the previous 16 years. We will train and test the models
in a standard way. On the data of the first 14 years, we will
perform stratified 10-fold cross validation [169] to train models
and gauge their performance. On the data of the 15th year, we
will appraise the performance of the best models, reflecting
future use in practice. We will use the standard performance
metric AUC [169] to choose the best model and record its AUC.
We will show the model’s accuracy, sensitivity, specificity, and
positive and negative predictive values when the cutoff threshold
of binary classification varies from the top 1% to the top 50%
of patients with asthma with the highest predicted risk. To find
the variables essential for achieving high model performance,
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backward elimination [154] will be adopted to remove features
as long as AUC drops by ≤0.002. We will compare the variables
essential for achieving high model performance on IH data with
those on UWM and KPSC data. The gender’s predictive power
will be checked explicitly. We will use the variables appearing
in both the UWM and IH data sets to construct a best model on
IH data and compare its performance on UWM data with that
on IH data. We will use the variables appearing in both the
KPSC and IH data sets to construct a best model on IH data and
compare its performance on KPSC data with that on IH data.

We will test the hypothesis that adopting our techniques could
enhance model performance twice, once for adults and once for
children. To do this, we will compare the AUCs of 2 predictive
models built using the attributes in our data set and the best
machine learning algorithm. The first model will harness all the
features essential for achieving high model performance. The
second model will be performed in the same way as our recent
model for predicting hospital use for asthma [44] related to
proneness to exacerbation. We anticipate that the second model
will have an AUC around our recent model’s AUC of 0.86. Our
hypothesis is as follows:

1. Null hypothesis: the second model has the same AUC as
the first model.

2. Alternative hypothesis: the second model has a smaller
AUC than the first model.

The categorical outcome variable of proneness to exacerbation
has 2 values (classes). According to the standard method
developed by Obuchowski and McClish [172] for AUC-related
sample size computation, using a 2-sided Z test at a significance
level of 0.05 and assuming for both classes a Pearson correlation
coefficient of 0.6 between the 2 models’ predictions, a sample
size of 464 instances per class provides 90% power to identify
an AUC difference of 0.05 between the 2 models. The 15th
year’s IH data cover >5000 children with asthma and >14,000
adults with asthma, offering sufficient power to test our
hypothesis. If the real correlation coefficient is different from
the assumed one by no more than a moderate degree, the
conclusion would remain valid.

Sensitivity Analysis
IH, UWM, and KPSC each recorded many variables. Another
health care system could record fewer variables. We will test
miscellaneous variable combinations and assess the performance
of the corresponding modified models. This will help us ensure
generalizability and identify critical variables. If a health care
system does not record a particular critical variable, the assessed
performance numbers can suggest alternative variables with
minimal degradation of model performance. On the basis of our
clinical experts’ judgment, we will merge variables apt to
co-occur, such as the variables appearing in a lab test panel,
into groups. We will form and publish a table listing possible
combinations of variables by groups, accompanied by the
performance numbers and the trained parameters of the
corresponding predictive models. A health care system interested
in deploying the model can use the table to assess the expected
model performance for their data environment and determine
the variables to be recorded. The table contains a distinct column
for each of IH, UWM, and KPSC. Many variables recorded by

IH, UWM, and KPSC and used in this study are common and
recorded by many other health care systems. Hence, these health
care systems already have all the variables appearing in each
of many rows in the table.

Aim 2: Automate Finding Modifiable Temporal Risk
Factors for Every High-Risk Patient

Overview of Aim 2
For patients with predicted risk over a fixed bar, such as the
75th percentile, we will automate explaining warnings, finding
modifiable temporal risk factors, and recommending customized
interventions. This will help clinicians make decisions regarding
IDM enrollment and develop customized care plans. To create
the new function, we will enhance our previous method [140]
of automatically explaining machine learning predictions with
no loss of model performance. Our previous method cannot
deal with longitudinal data, has hard-to-tune hyperparameters,
and has not been previously used for COPD or IDM.

Explanation Method
As aim 1 shows, we will use temporal features to transform
longitudinal data into tabular data, producing one column per
temporal feature. Our previous automatic explanation method
[140] can then be used. Each patient is labeled as either high
risk or not high risk. Our method mines from past data
association rules tied to high risk. One example rule is as
follows: the sulfur dioxide level was ≥4 parts per million for
≥4 days in the previous week AND the number of days to
albuterol refill rose over the previous 12 months → the patient
is high risk. The second item on the left-hand side of the rule
is a modifiable temporal risk factor. Three interventions for it
are to (1) assess the patient on asthma triggers and ensure that
the patient avoids them; (2) evaluate compliance with asthma
controller medications and prescribe, modify, or increase the
doses of the medications if necessary; and (3) create a new
asthma action plan to use more aggressive interventions when
the patient is in the yellow zone [173]. Our paper [149]
presented multiple interventions for several other temporal risk
factors. Through discussion and consensus, our clinical team
will examine the mined rules and remove those that make little
or no clinical sense. For each rule left, our clinical team will
identify the modifiable temporal risk factors in the rule and
provide zero or more evidence-based interventions from the
literature addressing the reason that the rule provides. The rules
are used to provide explanations instead of predictions.

At prediction time, for each patient our most accurate model
(initially resulting from aim 1) marks high risk, we will identify
and present all association rules tied to high risk and whose
left-hand side conditions are fulfilled by the patient, as well as
show the rules’ linked interventions as our recommendations.
Every rule presents a reason why the patient is predicted to be
at high risk. Users of the automatic explanation function could
provide input to facilitate the identification and removal of
unreasonable rules [174].
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Automatically and Efficiently Selecting Hyperparameter
Values
Our previous automatic explanation method [140-142] uses 5
hyperparameters. Their effective values differ according to the
modeling problem and data set. In our previous work [140-142],
for each data set, a computing expert took several months to
perform many trials to laboriously find these values. To reduce
this overhead and to allow health care researchers with no
extensive computing background to use our method, we will
extend the progressive sampling-based approach, which we
previously developed for expediting automatic machine learning
model selection [170], to automatically and efficiently select
the values of the 5 hyperparameters. On average, our progressive
sampling-based approach performs the search process 2 orders
of magnitude faster than the modern Auto-Weka automatic
selection approach [170,175]. Our approach generalizes to many
clinical applications.

We will also develop our techniques on COPD.

Aim 3: Assess the Impact of Actionable Warnings on
Clinicians’Decisions to Use IDM to Prevent Proneness
to Exacerbation

Goal of Aim 3
To prepare for future clinical use, in a UWM test setting, we
will assess the impact of actionable warnings on clinicians’
decisions to use IDM in patients with asthma to prevent
proneness to exacerbation. We will also access UWM
physicians’ (primary care doctors, pulmonologists, and
allergists) and nurses’ subjective opinions of automatic
explanations.

Recruiting Subjects
As an UWM operational project, we are building asthma
outcome prediction models and have access to approximately
700 physicians and approximately 1700 nurses managing adult
patients with asthma. Through personal contact and advertising
in their email lists, we will recruit 20 test participants (10
physicians and 10 nurses) with purposeful sampling to guarantee
sufficient variability in their work experience [176]. Every test
participant will offer consent before participation and be current
on UWM’s policy training on information security and privacy.
To protect privacy, every test participant will receive a
pseudonym linking their responses. Upon task completion, each
physician will receive US $2300 as compensation for
participation and for approximately 20 hours of work. Each
nurse will receive US $1200 as compensation for participation
and for approximately 20 hours of work.

Procedures
Using the 15th year’s (2019) IH data, we will randomly select
800 IH adult patients with asthma and automatically explain
the predictions of the best performing IH model formed in aim
1. Using patients outside the UWM can help ensure that no test
participant knows the outcome of any of these patients in the
following year. We will present a distinct subset of 40 patients
to each test participant and proceed in the following 4 steps:

1. Step 1: For each patient, we will display to the test
participant the 2005-2019 deidentified patient data in
reverse chronological order, as in the electronic medical
records, and ask the test participant to write down the IDM
enrollment decision (yes or no) and any interventions that
the test participant plans to adopt on the patient.

2. Step 2: For each patient, we will display to the test
participant the 2005-2019 deidentified patient data, the
prediction, the automatic explanations, and the interventions
connected to them. We will ask the test participant to write
down their IDM enrollment decision (yes or no) on the
patient after seeing the prediction and the explanations, the
linked interventions they agree with, those they disagree
with, and the interventions that they come up with in step
1 but whose concepts are missed by the linked interventions.

3. Step 3: Perceived usefulness is closely linked to future use
intentions and actual function use [177,178]. Using the
classic Technology Acceptance Model satisfaction
questionnaire [179], we will survey the test participant to
know their perceived ease of use and usefulness of
automatic explanations.

4. Step 4: We will conduct a focus group with 10 randomly
chosen test participants to assess what helps them use or
prevents them from using the automatic explanations in
clinical practice and why they agree or disagree with the
automatically recommended interventions.

Quantitative and Qualitative Analyses

Quantitative Analyses

We will provide descriptive statistics for each quantitative
outcome measure, including the mean and SD of each of the
following: (1) the number of times that a test participant changes
their IDM enrollment decision on a patient after seeing the
prediction and the explanations, (2) the number of linked
interventions for a patient a test participant agrees with, (3) the
number of linked interventions for a patient a test participant
disagrees with, (4) the number of interventions that a test
participant comes up with for a patient in step 1 but whose
concepts are missed by the linked interventions, and (5) the
rating of every item in the Technology Acceptance Model
satisfaction questionnaire. We will test the hypothesis that giving
actionable warnings will improve clinicians’ decision to use
IDM to prevent proneness to exacerbation, that is, the degree
of IDM enrollment decision matching whether the patient will
become prone to exacerbation in the following year. Our
hypothesis is as follows:

1. Null hypothesis: The degree of IDM enrollment decision
matching whether the patient will become prone to
exacerbation in the following year in step 2 is the same as
that in step 1.

2. Alternative hypothesis: The degree of IDM enrollment
decision matching whether the patient will become prone
to exacerbation in the following year in step 2 is larger than
that in step 1.

We will fit a random effect logistic model that accounts for the
correlation among the outcomes related to the same test
participant.
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Power Analysis for the Quantitative Analyses

Assuming a modest intraclass correlation of 0.1 within the same
test participant on the outcome, a sample size of 40 patients per
test participant for the 20 test participants is equivalent to a total
of 82 independent patients after factoring in the clustering effect.
We will have, at a 2-sided significance level of .05, 80% power
to detect a 9.7% increase in the chances of improving clinicians’
decisions to use IDM with actionable warnings. If the real
correlation is different from the assumed one by no more than
a moderate degree, a similar conclusion would hold.

Qualitative Analyses

Using the inductive method described in Patton et al [176,180],
test participants’ comments recorded in text during the focus
group will be loaded into ATLAS.ti qualitative analysis software
(ATLAS.ti Scientific Software Development GmbH) [181].
Three people from our research team will highlight the
quotations independently. Through discussion and negotiated
consensus in multiple iterations, these people will review
quotations, categorize quotations into precodes, merge codes
into categories, and synthesize categories to identify general
themes.

Exploring for Other Diseases
Preventive care is also widely adopted for patients with heart
diseases and diabetes. To explore what will be needed to
generalize our techniques to predict outcomes of these diseases
in the future, we will conduct 2 phases of focus groups, each
phase with a distinct set of 6 UWM clinical experts on these
diseases, and add more phases if these 2 phases do not reach
saturation.

As stated immediately before aim 1, the discussion above
concentrates on asthma. Whenever we refer to asthma, the same
applies to COPD and will be implemented and tested on COPD
in aims 1 and 2 but not in aim 3.

Ethics Approval
We have received approval from the UWM institutional review
board for this study and are applying for approval from IH and
KPSC.

Results

We have downloaded 2005-2020 weather and air quality data
from public sources [145,146]. For the clinical and
administrative data, GL at UWM has obtained the 2005-2018
data of patients with asthma from IH [44], the 2009-2018 data
of patients with asthma from KPSC [45], and the 2011-2018
data of patients with asthma from UWM [43]. We are retrieving
the other clinical and administrative data, mostly of patients
with COPD, from IH, UWM, and KPSC. We intend to complete
the study in 6 years.

Discussion

Using Our Results in Clinical Practice
IH, UWM, KPSC, and many other health care systems use IDM
and use inaccurate predictive models with AUC<0.8 and
sensitivity ≤49% for preventive care via care management

[22,24-26,46-57,59-93]. Similar to our recent work of using IH,
UWM, and KPSC data to greatly increase prediction accuracy
for hospital use for asthma [43-45] related to exacerbation
proneness, we expect our models predicting exacerbation
proneness to be more accurate than those inaccurate models,
benefit many patients, and have practical value. We will
automate explaining warnings and recommending interventions
to aid clinicians to review structured data in patient clinical
records faster and create customized care plans based on
objective data. After our methods find patients with the greatest
predicted risks and offer explanations, clinicians will review
patient clinical records, look at factors such as social dimensions
[182], and make IDM enrollment and intervention decisions.
As feature patterns linked to high risk and patient status keep
changing, our techniques can be used continuously to move
patients out of and into IDM and to discover new feature
patterns.

In addition to making the predictive model more accurate, using
temporal features showing early health changes and general
directions could also boost warning timeliness. If a patient will
be admitted to the hospital for COPD or asthma and the model
would not predict this until 1 week before the hospital
admission, intervening at that time could be too late to avoid
the admission. If the model uses suitable temporal features and
runs continuously, this patient could be found several weeks
earlier, when health decline just begins and preventing hospital
admission is likely.

Generalizability
Predictive models vary by diseases and other factors and could
be dissimilar to each other. However, our proposed methods
and software for extracting temporal features and automatically
explaining machine learning predictions are general and do not
rely on any special property of a specific health care system,
disease, or patient cohort. Given a new data set with a different
disease, set of variables, patient cohort, or prediction target, one
can plug in our software to extract temporal features and to
automatically explain machine learning predictions. Besides
being used for patients with asthma and patients with COPD,
preventive care is also widely adopted for patients with heart
disease and patients with diabetes [128], where our techniques
could be harnessed, for example, to predict hospital use. Our
sensitivity analysis results in aim 1 can be used to identify
critical variables and determine how to generalize a predictive
model to a health care system recording a different set of
variables from IH, UWM, and KPSC.

We will use data retrieved from 3 health care systems, UWM,
IH, and KPSC, to demonstrate our techniques on patients with
asthma and patients with COPD. These systems include an
academic system that has most of its patients referred from
elsewhere (UWM), 2 integrated systems (IH and KPSC), and
42 hospitals and 458 clinics. Spreading across 3 large geographic
areas, these heterogeneous facilities range from tertiary care
hospitals in large cities served by subspecialists to community
rural and urban clinics served by general practitioners and family
physicians with limited resources. These health care systems
use 4 distinct electronic medical record systems: KPSC uses
Epic; UWM uses Epic and Cerner; and IH uses Health Evolution
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through Logical Processing, Health Evolution through Logical
Processing 2, and Cerner. Variations in health care system type,
patient population, geographic location, cultural background,
staff composition, electronic medical record system, and scope
of services enable us to identify factors that generalize to other
facilities nationwide. The OMOP common data model [147]
and its linked standardized terminologies [148] standardize
administrative and clinical variables from ≥10 major American
health care systems [183,184]. Our models will be based on
OMOP and apply to these health care systems using OMOP.

With appropriate extension, our techniques can be adopted for
miscellaneous diseases and decision support applications and
can improve clinical machine learning. For example, our
techniques can enhance the prediction accuracy of other
outcomes such as no-shows [185], hospital use [186], and
treatment adherence [187]. This will enable us to target
resources, such as telephone reminders to reduce no-shows
[185], home visits by nurses and care management to reduce
hospital use [186], and interventions to boost treatment
adherence [187].

We can use the features extracted by our temporal feature
extraction method to create a feature library to ease feature reuse
[188]. This will help reduce the effort required to create
predictive models for other modeling projects.

Significance Thresholds
In both the Evaluating Model Performance and Power Analysis
and Quantitative and Qualitative Analyses sections, we use the
widely adopted significance level of .05 to perform power
analysis. The statistics community has debated a lot about the
P value and its dichotomization [189-191]. Setting a threshold
for the P value is essential for power analysis and sample size
estimation [189]. In addition, to the best of our knowledge, no
consensus has been reached on what the best alternative is if P
values and statistical significance are not used [189]. Following
the advice given by Amrhein et al [191], after obtaining the
results of this study, we will report the actual P values, treat
them as continuous measures of evidence against the null
hypotheses rather than as parts of binary decision rules, and
acknowledge that multiple independent studies are needed to
provide stronger support for or against our hypotheses.

Conclusions
Our results will help make IDM for asthma and COPD more
proactive, effective, and efficient, improving outcomes and
saving resources. Future studies will evaluate our methods for
heart diseases, diabetes, and other diseases; deploy our methods
at UWM, KPSC, and IH for IDM for asthma and COPD; and
test the performance against the current IDM practice.
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AUC: area under the receiver operating characteristic curve
COPD: chronic obstructive pulmonary disease
ICD-9: International Classification of Diseases, Ninth Revision
ICD-10: International Classification of Diseases, Tenth Revision
IDM: integrated disease management
IH: Intermountain Healthcare
KPSC: Kaiser Permanente Southern California
LSTM: long short-term memory
OMOP: Observational Medical Outcomes Partnership
SSH: Secure Shell
UWM: University of Washington Medicine
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