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Abstract

Background: Individuals can experience different manifestations of the same psychological disorder. This underscores the
need for a personalized model approach in the study of psychopathology. Emerging adulthood is a developmental phase wherein
individuals are especially vulnerable to psychopathology. Given their exposure to repeated stressors and disruptions in routine,
the emerging adult population is worthy of investigation.

Objective: In our prospective study, we aim to conduct multimodal assessments to determine the feasibility of an individualized
approach for understanding the contextual factors of changes in daily affect, sleep, physiology, and activity. In other words, we
aim to use event mining to predict changes in mental health.

Methods: We expect to have a final sample size of 20 participants. Recruited participants will be monitored for a period of time
(ie, between 3 and 12 months). Participants will download the Personicle app on their smartphone to track their activities (eg,
home events and cycling). They will also be given wearable sensor devices (ie, devices that monitor sleep, physiology, and
physical activity), which are to be worn continuously. Participants will be asked to report on their daily moods and provide
open-ended text responses on a weekly basis. Participants will be given a battery of questionnaires every 3 months.

Results: Our study has been approved by an institutional review board. The study is currently in the data collection phase. Due
to the COVID-19 pandemic, the study was adjusted to allow for remote data collection and COVID-19–related stress assessments.

Conclusions: Our study will help advance research on individualized approaches to understanding health and well-being through
multimodal systems. Our study will also demonstrate the benefit of using individualized approaches to study interrelations among
stress, social relationships, technology, and mental health.
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Introduction

Background
Chronic stress is associated with a person’s physical and
emotional well-being. In the United States, 4.7%-11.2% of
adults regularly experience worry, anxiety, nervousness, or
depression [1]. Stress is a major factor that may contribute to
cardiovascular diseases (eg, stroke) [2,3], and repeated stress
exposure is linked to adverse mental health outcomes and
behaviors, such as depression, anxiety, self-harm, suicidality,
and addiction [4,5]. Adolescence and young adulthood are
at-risk periods of development wherein mental disorder and
mortality incidence rates largely increase [6-9]. These changes
in mental health may, in part, be due to rapid shifts in physical
and psychological development during brain maturation [10-12].
Indeed, emerging adults, including college students, experience
chronic stress; one-fifth of students meet the criteria for severe
behavioral problems [13], approximately 30% of college
students meet the criteria for depression [14], and 10% of
students screen positively for anxiety disorder [15]. Students
often experience increases in allostatic load due to continuous
exams, the increased number of nonacademic responsibilities
(eg, jobs), changes in social support (eg, moving away from
home), social stressors (eg, making new friends), and other
events that are associated with living in a new environment.
These stressors are also accompanied by uncertainty and
challenges to individuals’ identities [16,17]. Given these
academic, social, and psychological stressors, it is hardly
surprising that universities struggle to meet the demand for
on-campus mental health services [18]. Additionally, students
who need mental health services the most may not take
advantage of these services because of social stigma and
pragmatic reasons (eg, time constraints) [18,19]. Therefore,
stress reduction and management are crucial for this population,
as they may experience high-intensity negative emotions [20].
Furthermore, emerging adults have yet to develop the maturity
required for exerting top-down control over intense emotional
experiences [21]. The goal of this paper is to introduce a
research protocol for a prospective study that examines the
feasibility of a multimodal approach to understanding the unique
individual nuances of mental health.

Psychologists and human behavior researchers have long
understood the importance of adaptive stress responses and
emotional functioning in well-being. Understanding the
intricacies of mental health and its associations with numerous
physical and life behaviors is important for choosing
interventions and approaches that promote good mental health.
From this perspective, mental health is viewed along a health
continuum, wherein individuals may fluctuate across a spectrum
of diminishing and flourishing mental health [22]. Psychological
functioning is closely associated with physical functioning; the
manifestations of mental states may be apparent in a person’s
physical state [23]. For example, heart-rate variability (ie, a
measure of the variation of time between heartbeats) is linked
with the stress responses of individuals with affective disorders
[24]. Furthermore, with regard to physiological signs and their
relevance to mental health, sleep and physical activity are
important factors that are associated with mental health [25,26].

Studies often examine these factors separately; sleep researchers
may not account for physiological activation or activity, and
physiology experts may not include measures of sleep in their
studies. A crucial next step in the field of mental health research
is examining the interconnectedness of these factors in real time
to increase the ecological validity of mental health assessments.
This can be done by taking advantage of advancements in
technology that ultimately improve mental health treatments.
Recent clinical studies have noted the utility of individualized
approaches that address mental health concerns.

For several decades, research has focused on how different
strategies for coping with stress or maladaptive emotional
experiences (ie, feeling emotions too intensely, feeling emotions
for too long, or feeling emotions in the wrong context) [27,28]
relate to psychopathology and worsen health [29,30]. Typically,
stress management for emotion and mood-related disorders
include evidence-based treatments such as cognitive behavior
therapy, acceptance and commitment therapy, and dialectical
behavior therapy [31-33]. However, clinical researchers have
suggested that more personalized models and approaches for
understanding individual differences and individuals’ unique
experiences may inform research on the risk of developing
psychopathology [34]. Recently, clinical research has focused
on understanding the complexities of mental health symptoms
within and around an individual [35]. Furthermore, clinical
researchers have been increasingly using transdiagnostic and
precision medicine approaches instead of relying on the typical
clinical categories and diagnoses in the Diagnostic and Statistical
Manual (DSM) [36-39]. This gradual shift from using the DSM
is partially due to inconsistencies in clinical diagnoses (ie,
symptoms of different disorders often overlap). More
specifically, patients do not always exhibit the same symptoms
for the same disorder. For instance, depression might impact
an individual’s sleep, but depression might manifest in the form
of anhedonia or social withdrawal for other individuals.
Furthermore, other clinical diagnoses, such as posttraumatic
stress disorder, may result from differing types of trauma, which
affect the type of symptoms that an individual might exhibit
[40]. In addition, people with different diagnoses (eg, anxiety
and depression) share many common features (eg, avoidance
and withdrawal) and often benefit from the same or similar
interventions (eg, exposure or behavioral activation). The
recognition of heterogeneity in symptoms and clinical
presentations within diagnostic categories, and the recognition
of homogeneity across clinical groups has led many to question
the utility of the DSM [37,39]. With the ongoing shift in clinical
research, researchers have begun to use individualistic
approaches for understanding the risks and development of
psychopathology. Researchers have also questioned whether a
personalized model of treatment that is based on the unique
symptomatology of an individual would result in a more
effective means of recovery. Furthermore, it is crucial to
examine changes in symptoms and behavior over time.

Clinical researchers have begun to use personalized model
approaches that take advantage of the advancement and use of
wearable and mobile technology, which can be used to predict
and prevent adverse mental health outcomes. Noninvasive
wearable devices allow researchers to track features that are
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relevant to mental health, such as mood, sleep, and physiology
[41-44]. The use of intensive, longitudinal approaches (eg, daily
reporting and the use of wearables) allows researchers to better
understand the manifestations of psychopathologies and predict
symptomatology [45-47]. For example, studies have combined
subjective reporting for evaluating mood with objective
measures for physical activity to understand the associations
between negative mood and physical activity [48]. Moreover,
researchers have recommended the use of individualized
approaches for understanding psychopathology; treatments can
be tailored to each individual, as a person’s symptoms may
differ from those of another person with the same
psychopathology [34]. The Internet of Things (IoT) is a nascent,
but rapidly growing paradigm wherein the objects of everyday
life are equipped with sensing, processing, storage,
communication, and networking capabilities that allow objects
to communicate with each other and with users. These objects
have become an integral part of the internet [49,50]. In addition,
wearable devices (ie, smart wristbands, rings, clothing, etc)
form a rapidly emerging new class of IoT technologies named
wearable IoT (WIoT) technologies, which have the ability to
sense critical physiological, behavioral, and contextual data.
WIoT technologies can also analyze, store, and transmit these
valuable data [51]. An artificial intelligence–enabled event
mining system that operates on such rich big data can be used
to assess temporal associations among events, for the purpose
of building personalized models. These personalized models
can be used to enhance the health and well-being of individuals.
A personalized model approach allows researchers to conduct
root cause analyses and study interrelations among stress, social
relationships, technology, and mental health. To gain a holistic
perspective of well-being and factors that contribute to
fluctuations in one’s mental health, researchers often use IoT
technologies to monitor physical health (ie, sleep, physical
activity, and physiology) and behaviors, and to conduct
ecological assessments (eg, daily diaries and surveys) for
assessing psychological well-being (ie, mood, emotion, and
depression). An advantage of a holistic approach includes the
ability to identify various environmental and social factors that
may be overlooked during standardized diagnostic tests, since
it is well known that psychological disorders do not have one
root cause [52-54]. Although there are many benefits to using
these approaches, a large portion of related literature has only
focused on the theoretical advantages [55]. Many studies have
yet to examine data that support these theoretical advantages.
Indeed, holistic and personalized approaches are a recent,
emerging topic in the field of psychology; researchers have used
machine learning and network analysis techniques for analyzing
intensive, self-reported assessment and wearable data, to
examine symptom clusters for depression [56]. Furthermore,
this approach may help with informing mental health
interventions and health care providers’ clinical
recommendations. Studies on the IoT and the use of wearables
in health monitoring have suggested that clinicians may be able
to use WIoT technology–based information to complement their
diagnoses and recommendations [57]. The recent advancements
in WIoT technology research have allowed researchers to use
personalized and holistic approaches for understanding the
development of mood disorders.

Objective
In this protocol paper, we describe a prospective study that aims
to assess the effectiveness of a multimodal approach for
establishing a more comprehensive understanding of an
individual’s experience. We will achieve this by conducting
subjective, behavioral, and physiological assessments. The use
of WIoT technologies that capture in-the-moment experiences
and contexts, such as the Oura ring and Samsung Gear Sport
smartwatch, has been shown to improve the ecological validity
of mental health assessments [58,59]. Thus, a goal of our
prospective study is to use a multimodal assessment method
that combines data from emerging WIoT technologies and
personal chronicles in a daily activity logging framework (ie,
the Personicle app) [60,61], to better understand the unique
contexts and factors of stress and emotional well-being, as well
as the risks and development of psychopathologies among young
adults. More specifically, this study aims to investigate daily
factors (ie, stressors and activities) and their relationship with
the psychopathologies and daily emotions of college students.
Ultimately, we believe that our study will help with developing
personalized models that can be used to monitor, predict, and
treat mental health and well-being issues among emerging
adults. Specifically, we test the following big-picture research
question: is it possible to build personalized predictive models
of mental health for individuals? For example, sleep disturbances
and poor social interaction skills can be used as factors for
predicting increases in depression severity. However, reduced
amounts of physical activity and low positive emotionality are
other factors that can be used to predict increases in depression
severity over time.

We believe that the methods we describe in this protocol paper
may allow psychologists to identify the root causes of stress
and develop an evidence-based approach for monitoring stress
and emotions among adolescents and young adults. Herein, we
provide an overview of our prospective study.

Methods

Study Design

Eligibility Criteria and Recruitment
Our protocol was approved by the institutional review board at
the University of California, Irvine (approval number:
2019-5153). We will recruit participants by distributing flyers
throughout the college campus community, disseminating related
digital content on social media pages (ie, the University of
California, Irvine Facebook pages), sending emails to people
on the university listservs, and telling members of the teaching
faculty to share study information on their class websites. These
methods will hopefully yield a broad and representative sample
of college students across different disciplines and years of
study. Eligible participants include full-time students from the
University of California, Irvine aged 18-22 years, and those
who own an Android smartphone (ie, must be students’ primary
phone) that is compatible with the Personicle app, ecological
momentary assessment (EMA) phone-based surveys, and study
devices. Participants are ineligible if they are parents, are
married, are returning to school after a period of ≥3 years, or
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are unable to speak/write English fluently. Eligibility will be
determined via email and phone screening, which will be
conducted prior to laboratory visits. Participants with indications
of suicidal ideation or moderate to severe depression during the
survey assessments will undergo additional screening, which
will be conducted by one of the lead researchers (ie, JB, a
clinical psychologist). The lead researcher may decide to
withdraw participants from the study to protect participants’
safety and health. This strategy will ensure that participants
with mental health concerns (eg, depression) will still have the
opportunity to participate in the study.

Data Collection Procedures
Our study will involve an in-lab preassessment, followed by a
12-week remote data collection period and an in-lab exit
assessment. During the preassessment, participants will fill out
a consent form and complete a questionnaire battery that consists
of standard psychological and relationship-based measures.
Demographic information, including age, year of schooling,
gender, ethnicity, and relationship duration, will be collected.
After the preassessment, participants will be given noninvasive
WIoT devices that assess activity and physiology throughout
the day and during sleep, in an effort to capture an accurate
depiction of participants’ daily physical habits and health (see
Figure 1). Participants will then be asked to download four apps
onto their smartphone; one app will be for completing daily
surveys on emotion, the second app (ie, Personicle) will collect
daily activity data (eg, phone interactions and physical
activities), and two others (Oura and Galaxy wearable) in order
to use the wearables and track the data. At the end of the
12-week period, participants will complete a battery of
questionnaires, which will be similar to their initial assessment
battery. At the end of their participation, participants will
complete a final, postassessment questionnaire that contains

additional questions about technology acceptance, open-ended
feedback, and whether they used mental health services during
the participation period. Participants will be told to wear their
smart devices at all times (ie, if possible) and sync their devices
every few days, to ensure that our servers receive the data.
Participants will also be informed that they need to maintain a
survey completion rate of at least 80%. This percentage was
chosen based on previous research studies that required a similar
completion rate [62,63]. To maintain high adherence rates and
low attrition rates, we will monitor incoming data on a weekly
basis to ensure that participants are syncing and wearing their
devices and completing the daily survey. Our web-based
dashboard provides real-time information on the wear time of
sensors and the completion status of surveys. Participants will
be contacted if they fall below the weekly 80% assessment
completion rate. Participants will also be sent reminders via
text message, email, or phone call if more than 2-3 days of
inactivity per week are detected. Inactivity will be defined as
failing to sync the ring or watch, failing to wear the ring or
watch, and failing to complete the daily and weekly survey.
Reminders will be primarily sent via text message, but if
participants do not respond or do not adhere to study procedures,
then the research team will send reminders via email and phone
call. We will set up a study-specific Gmail account and Google
voice account for contacting participants. The reminders will
state something to the effect of the following: “Hello, we have
noticed that you have not completed the daily survey within the
past 2 days. Your survey completion rate is currently at 70%.
To ensure you are completing at least 80% of the surveys, please
remember to complete the survey every day.” Furthermore, the
reminders will be administered on a case-by-case basis, because
survey completion is influenced by external factors, such as the
survey app not functioning on a certain day or a wearable device
being faulty.
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Figure 1. Data that are collected by the Oura ring and the Samsung Gear Sport smartwatch. The Oura ring collects data on sleep, readiness, and activity.
The Samsung Gear Sport smartwatch collects data on sleep and activity, by using sensors (ie, a barometer) and a pedometer system.

Mental Health and Well-Being Assessment Battery
At study intake and at regular intervals thereafter (ie, 3 months
following intake and every 3 months after that point),
participants will complete a mental health and well-being
assessment battery. This battery will be identical at each time
point (with the exception of additional measures at the follow-up
and postassessment), and will contain a variety of validated,
gold-standard assessment tools that are used for measuring an
array of mental health symptoms that are common in the
emerging adult population. The assessments that the participants
will complete include (1) the 21-item Beck Depression
Inventory-II [64], which measures the severity of the cognitive,
affective, behavioral, and physiological symptoms of depression
that people experience over 2 weeks; (2) the 6-item anxiety
subscale of the Brief Symptom Inventory [65], in which anxiety
severity is rated on a 4-point subscale that ranges from 0 (ie,
not at all) to 4 (ie, extremely); (3) the 3-item University of
California, Los Angeles Loneliness Scale [66], in which
loneliness is rated on a Likert scale that ranges from 1 to 3; and
(4) the Brief Coping Orientation to Problems Experienced Scale,
which is a 28-item questionnaire on coping responses (eg,
substance abuse) for stressful events [67]. At the end of the
study, participants will complete one final mental health and
well-being assessment battery. With regard to the scales in this
battery, we will calculate the internal consistency of each

measure and compute participants’ total scores for each measure.
Multiple assessments of participants’ mental health and
well-being data, and identical measures across time intervals
will enable us to examine changes in mental health and
well-being indicators across the year.

Wearable Devices

Oura Ring
The Oura ring [68] measures a myriad of physiological
variables, which are categorized into three general health areas,
as summarized in Figure 1. The Oura ring collects information
on sleep, including the time that participants spend in different
stages of sleep (ie, the light, deep, and rapid eye movement
stages), by detecting and interpreting physiological measures
such as heart rate, heart rate variability, and pulse wave
variability amplitude [69,70]. The Oura ring will uniquely
calculate participants’ activity variables, including energy
expenditure and activity level, based on a highly personalized
combination of body metrics (ie, height, weight, age, and
gender) and 3D accelerometer data. Metabolic equivalents [71]
are the Oura ring’s primary unit for measuring energy
expenditure. These are taken into consideration when the Oura
ring categorizes the intensity of aerobic exercise. Additionally,
each participant will be given a personalized activity score on
each day. Activity scores reflect participants’ overall activity
intensity, activity frequency, and postworkout recovery time.
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Participants will be given the opportunity to view their data (eg,
the weekly trends of each measure) on the Oura app (Figure 2),

which participants will install on their phones during the initial
assessment session.

Figure 2. Examples of Oura ring screens that display information on heart rate variability, daily movement, and sleep stages. These screens can be
viewed on the Oura phone app.

Samsung Gear Sport Smartwatch
In addition to the Oura ring, participants will be given a
Samsung Gear Sport smartwatch to wear on a daily basis. The
Samsung Gear Sport smartwatch operates on the open-source
Tizen Operating System, includes open software development
kits, and provides open access to raw signals [72]. The
smartwatch’s sensors measure vital signs and signals, such as
photoplethysmogram signals, heart rate, heart rate variability,
and respiration rate. This allows the smartwatch to assess stress,
activity levels, and sleep (see Figures 1 and 3). Furthermore,
our research team has developed an app that can be used on this
watch. The app extracts raw signals (eg, photoplethysmogram
and proper acceleration signals) from the watch’s sensors, which

allows us to conduct elaborate biosignal processing and machine
learning analyses on data, and to assess complicated phenomena,
such as stress. Similar to the Oura ring, the Samsung Gear Sport
smartwatch uses a variety of sensors to quantify different activity
measures, in an effort to inform wearers of their physical health
habits (Figure 1). The watch places a heavy emphasis on
exercise and activity metrics, and unlike the Oura ring, the watch
uses a gyrosensor and alti-barometer to assess environmental
factors, such as altitude and step incline, for calculating variables
such as the number of calories burned and moving distance.
When paired with the Oura ring, the Samsung Gear Sport
smartwatch provides a sensory system that yields an
all-encompassing insight into the exercise and activity habits
of the participants.
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Figure 3. Examples of Samsung Gear Sport activity screens that display cycling information (eg, trends, speed, heart rate, and elevation). These screens
can be viewed on the Galaxy Wearable phone app.

Personicle App
Personicle is a multimodal personal chronicle of daily activity
that automatically integrates heterogeneous sensory data from
the IoT (eg, accelerometer, gyroscope, altimeter, GPS, light
sensor, and temperature sensor) with contextual, social, and
environmental information to create a chronicle of life events
(ie, activities and biomarkers) [60,61]. For the purpose of our
study, the Personicle app will be used to assess the three
following main event categories: activity-related (eg, walking
and socializing), health-related (eg, high heart rate variability),
and context-related (eg, stressful workplace, parents’house and
friend’s house) events (see Figure 4). To identify daily activities,
we built a common daily activity model by identifying the global
unique properties of each individual event. Specifically, we
used a common event modeling approach to analyze the physical

(eg, event occurrence time stamps and intervals), logical (eg,
temporal domain), and relative (eg, temporal relationships to
other events) relationships between each aspect and an event.
We incorporated these general aspects into the categories of our
modeling attributes and modified the physical, logical, and
relative components to match those of daily activities. We
developed an event mining system to identify temporal
associations among events, which allowed us to build
personalized models [73]. For instance, to understand an
individual’s social behavior, we must examine their locations
(eg, the amount of time an individual spends at various places,
such as a friend’s home or parents’ home). We also used our
event mining system to identify linkages between activities (eg,
going out for ice cream) and behaviors (eg, driving to friend’s
house), which also contribute to building an individual’s
personalized model.
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Figure 4. Examples of screens that are shown on the Personicle phone app. These screens display information on physical activity (eg, heart rate) and
daily activities (eg, home events).

Daily and Weekly Assessments
Participants' daily moods will be assessed by using the Positive
and Negative Affect Schedule [74], which is a validated measure
for assessing both positive and negative affect (ie, inspired,
excited, distressed, and upset). The Positive and Negative Affect
Schedule is presented as a slide scale with indicators at the top
ranging from “very slightly” (0) to “extremely” (100). Emotion

assessments will be evaluated with one of the phone apps that
participants will install onto their smartphones (see Figure 5).
Participants will also answer two open-ended response questions
once a week, to provide additional context for their subjective
experiences (ie, “Please write about your high points and low
points this week. Please try to be as detailed as possible” and
“Please rate how you felt about your week”).
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Figure 5. An example of the daily assessment surveys that participants are instructed to complete every evening.

Data Analytic Plan
Since our pilot study aims to assess the feasibility of using an
extensive multimodal approach for understanding the holistic
aspects of stress and well-being, our analyses are exploratory
in nature. Furthermore, our sample size is small. Thus, we will
take into account the adherence rate and the amount of collected
data during the assessment period. We will contact participants
throughout the data collection process in order to maintain an
estimated adherence rate of 80% and reduce the amount of
missing data. However, missing data will be reviewed and
imputed via full-information maximum likelihood estimation,
based on the assessments that participants have completed on
other days. Since the questionnaire will be conducted at multiple
time points throughout the study, we intend to examine whether
there were changes in students’ assessments of depression,
loneliness, and well-being. More specifically, daily mood
assessments will be based on participants’ daily surveys; and
daily physiology, sleep, and activity assessments will be based
on the data collected from wearable devices. The wearables will
allow us to assess physiology and activity at different time points
throughout the day. To make these data comparable with those
of our daily assessments (ie, assessments that are only conducted
once during the day), we intend to aggregate these data to obtain
a single value for each day. To examine associations between
intensive longitudinal assessment data (ie, data that are collected
daily over several months, including daily reported mood and
sleep), we will conduct multilevel modeling analyses [75] to
account for the multiple assessments of each individual. Time
series analysis and dynamic multilevel modeling techniques are

common approaches to analyzing intensive longitudinal data
and examining temporal associations and trajectories between
constructs of interest [76]. However, given our intended sample
size of 20 participants, our study design may be underpowered
in terms of detecting an effect.

A central aim of our study is to examine the links among daily
variables (eg, sleep, physiology, emotion, and Personicle data)
and long-term mental health and well-being data. In order to
achieve this aim, we will use data reduction strategies. For
instance, we are collecting data on a broad battery of mental
health and well-being scales in order to obtain a comprehensive
assessment of participants’ psychological functioning. By
conducting an exploratory factor analysis, we will be able to
examine whether these measures load onto underlying factors
(eg, mental health, internalizing, and externalizing symptoms),
and reduce the number of analyses we need to conduct.
Furthermore, we will use multilevel modeling techniques to
examine whether repeated measures data (eg, sleep, emotion,
physiology) can be used to predict changes in mental health and
well-being data.

In addition to the use of multilevel modeling approaches for
examining associations among assessments over time at the
within-person level, we intend to use idiographic and network
analytic approaches for examining personalized models of
mental health. Researchers have long used unified structural
equation modeling (SEM) and dynamic SEM to create
idiographic personalized models of personality and mental
health [77,78]. Unified SEM is particularly helpful because it
uses the group iterative multiple model estimation approach to
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identify components of symptoms and associations among
constructs within an individual. These data can be used to
examine similarities across the sample [79,80]. Furthermore,
network analyses that are conducted by using a multivariate
time series analysis approach may also offer better insight into
key psychopathology symptoms that an individual experiences
[81,82]. Despite the small sample size and the possibility of
participants withdrawing from the study, we will have numerous
observations for each individual over the course of 12 months
(ie, an estimated 3000-5675 observations in total). Thus, we
will use multilevel modeling to assess the relationships among
an individual's daily emotions, activities, and sleep patterns at
the within-person level. We may be able to examine individual
cases, wherein the relationships among an individual’s emotions,
activity, and sleep patterns may differ from those of another
individual. For example, daily negative affect and poor sleep
quality may be strongly related for one participant, whereas
daily positive affect and increased activity levels may be
strongly related for another participant.

Results

We expect 20 participants to complete the study. We recruited
an initial cohort of participants between January 2020 and March
2020 (N=10), and they are expected to complete the 12-week
data collection period and the following 9-month extension
period. Due to the unexpected COVID-19 pandemic, we will
make subsequent adjustments and additions to our study. We
will change the consent form process and initial survey
assessments so that they can be administered and completed
via internet-based methods. We will also develop a procedure
that will enable us to mail study devices to participants’ homes.
A research assistant will help participants set up the devices via
video call. Furthermore, COVID-19–related questionnaire
measures will be added to the battery questionnaire and daily
survey, to assess the pandemic’s psychological impact on
participants. Due to the COVID-19 pandemic, participants will
be offered to participate in an extension of the study, which will
prolong their participation period by up to 9 months. During
this extension period, participants will continue to undergo the
same study procedures and complete follow-up assessment
questionnaires every 3 months. To reduce attrition rates and
increase adherence rates, participants’ compensation will be
increased for the additional months of participation. Research
assistants will send participants encouraging reminders about
the potential importance of our study, in order to underscore
the fact that their participation is an important contribution to
research. In doing so, we hope to incentivize participant
adherence. Thus, we aimed to recruit a second cohort (N=10)
during the months of June and July 2020. This cohort will be
expected to participate in our study until the end of the year.
Given that we will be analyzing participant data over the span
of a year, there may be certain time points in which participants
may encounter challenges to completing the daily assessments
of the study. We recognize that there may be periods of time
wherein we miss large amounts of data. We hope that by closely
focusing on periods of time (ie, over a 3-month span) and
specific events (ie, the start of the shelter-in-place during the
pandemic, and before and after the US presidential election),

we will be able to examine participant data over long periods
of time and reduce the amount of missing data.

The use of wearable sensors for 12 months comes with the
inevitable issue of missing data. Our group has devised a
multitier strategy to mitigate the amount of missing sensory
data. Our study uses a multimodal data collection process that
involves the long-term aggregation of data from several sources.
Even though several challenges arise when implementing and
managing such a process, we believe that a by-product of this
process is inherent data resiliency, which will enable us to apply
data imputation techniques for minimizing the amount missing
data. The main reasons for missing data include the following:
(1) a user is unable or not willing to wear the device for several
periods of time; (2) the device runs out of battery power for a
period of time; (3) device failure occurs; or (4) the device is
momentarily detached from the body. These may result different
forms of missing data, as follows: (1) missing completely at
random data, which include data that are missed due to sensor
failure; (2) missing at random data, which include data that are
missed because the device is detached from the body (eg, times
when the device is charging); and (3) not missing at random
data, which include data that are missed when a user removes
the device (eg, before smoking) to hide an activity’s effect on
vital signs. We will use well-accepted data imputation
techniques, such as deletion methods (eg, listwise or pairwise
deletion), multiple imputation methods, model-based methods
(eg, direct maximum likelihood estimation), machine
learning–based methods, and multisource methods, based on
the type of missing data. Our criteria for selecting data
imputation techniques include (1) unbiased parameter estimates;
(2) acceptable estimates of variability (ie, correct standard
errors); and (3) the highest statistical power. We will also use
a technique that was recently proposed by our group; this
involves a missing data–resilient, decision-making, personalized
approach for assessing health care IoT devices [83]. This method
has been validated in an 8-month continuous maternity care
project [84].

In summary, we will take advantage of the multimodality nature
of two separate wearables (ie, sensory inputs, personalization,
and the redundancy of different signals), to perform advanced
data imputation techniques for recovering missing data or
mitigating the amount of missing data. Furthermore, a
web-based dashboard will assist the research team in the early
identification of technical issues during monitoring. The research
team will also receive alerts about the occurrence of missing
data (eg, users not wearing the sensors for a period of time, the
research team not receiving data packets due to internet
connection issues, etc).

Discussion

Contributions
To our knowledge, ours is one of the first studies to use EMA
surveys, wearable smart devices, and a personal event life
logging system to record daily moods and events to build a
personalized model for predicting changes in the mental health
and well-being of college students. A strength of our ongoing
study is that we have an immense amount of rich data from
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participants that have been analyzed on a daily basis over the
course of 1 year. Our study is also unique because we collected
data before the COVID-19 pandemic and during the pandemic.
This provided us with the opportunity to analyze patterns in
everyday life during a pandemic. Furthermore, due to the
COVID-19 pandemic, students face the challenge of using
remote methods to maintain social relationships and complete
coursework. This will further exacerbate well-being issues
among college students [85,86]. Thus, our study has the ability
to examine well-being patterns among college students that use
remote learning methods during the pandemic. Additionally,
the results of our pilot study will help Personicle become a better
open-source IoT app that is available to the public.

Limitations
We anticipate that our study will have limitations that are similar
to those of many other EMA-based studies, such as
nonadherence to study procedures and experimental fatigue.
These limitations might result in missing data [87]. Furthermore,
participant burden may be reflected by the data quality of
completion times for daily surveys (ie, taking time to select
answers vs carelessly selecting answers), and biased responses
(ie, the influence of the research team sending reminders and
conducting follow-up examinations). Longitudinal studies may
also have unintended effects, such as participants engaging in
healthier behaviors when tracking their own emotions and health
[88]. Despite these limitations, WIoT devices allow for
naturalistic data collection processes that reduce the burden on
participants. We also attempted to reduce participant burden by
keeping daily assessments brief. Furthermore, participants who
fail to meet our criteria for adherence rate (ie, participants with
a weekly assessment completion rate of only 10%) will be
withdrawn from the study. We will recruit additional participants
to achieve our target sample size (ie, N=20), and keep careful
records about the replacement of participants. As we are
assessing college students over the course of a year, we may be
able to include time as a covariate for examining changes in
well-being over time (eg, changes in sleep patterns or physical
activity over time). Additionally, several of the biggest limiting
factors of the Personicle app include its general definitions for
activities, its inability to collect data on a wide range of events,
and its inability to distinguish specific events from a large
segment of events.

Since the existing Personicle system was modified for our
specific study, we expect that multiple system updates will be
implemented to fix bugs and other issues. Although the
refinement of the system may provide us with more accurate
data, it might lower the accuracy and interpretability of
previously collected data. We expect the need to notify enrolled
participants about updating their Personicle app to the most
recent version if updates do occur over the course of the study.
However, a benefit of the Personicle system is that it allows
users to send Personicle system logs (ie, files that have all the
data that the app has collected) directly to the server. This will
allow the research team to identify missing data or issues.

Another limitation is that our study began in January, with the
intention of assessing students over the course of a certain period
of time. However, since the COVID-19 pandemic has disrupted
the daily lives of many individuals, our research plans had to
be adjusted to account for participants’ experiences during a
pandemic. To study the impact of the pandemic, we incorporated
additional questions into the daily assessments (ie, “Please rate
how worried you felt about your health today” and “How
worried were you about contracting COVID-19 today”).
Participants will answer these questions by using a sliding scale
that ranges from 0 (ie, not worried at all) to 100 (ie, extremely
worried). Despite these changes, the amount of data that we
collected over the course of the year and the COVID-19
pandemic offers potentially interesting insight into
individualized experiences and well-being.

Conclusion
In the context of an individualized approach to understanding
mental health and well-being, using WIoT devices and the
Personicle app as a multimodal system allows us to conduct
root cause analyses and study interrelations among stress, social
relationships, technology, and mental health. Our study will
provide fundamental contributions to the field of computing,
as we investigate a holistic, cybernetic, closed-loop architecture
for personalized model generation. Our study will also contribute
to psychological science, as we have created an evidence-based
approach based on individualized, Personicle-generated
feedback for reducing stress and negative emotionality in
adolescents and young adults.
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