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Abstract

Background: In recent years, remarkable progress has been made in deep learning technology and successful use cases have
been introduced in the medical domain. However, not many studies have considered high-performance computing to fully
appreciate the capability of deep learning technology.

Objective: This paper aims to design a solution to accelerate an automated Gram stain image interpretation by means of a deep
learning framework without additional hardware resources.

Methods: We will apply and evaluate 3 methodologies, namely fine-tuning, an integer arithmetic–only framework, and
hyperparameter tuning.

Results: The choice of pretrained models and the ideal setting for layer tuning and hyperparameter tuning will be determined.
These results will provide an empirical yet reproducible guideline for those who consider a rapid deep learning solution for Gram
stain image interpretation. The results are planned to be announced in the first quarter of 2021.

Conclusions: Making a balanced decision between modeling performance and computational performance is the key for a
successful deep learning solution. Otherwise, highly accurate but slow deep learning solutions can add value to routine care.
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Introduction

In recent years, remarkable progress has been made in deep
learning due to the emergence of big data processing technology.
Deep learning is a family of machine learning that consists of
multiple neurons in multiple layers. A neuron is a mathematical
function with weights and biases, known as parameters. It
receives real numbers from the neurons in the previous layer,
generates another real number, and transmits it to the neurons

in the next layer. The parameters for each of these neurons are
optimally determined by a backpropagation algorithm, such as
stochastic gradient descent, that looks for the minimum of a
function. This contributes to the success of deep learning of
image data compared with conventional techniques because it
is able to learn the intrinsic data features without handcrafted
feature engineering.

Gram stain is a laboratory procedure for the rapid classification
and identification of microbial pathogens. Unlike other
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microbiology processes that can be fully automated [1], the
interpretation of Gram stain images still relies on human users,
such as a physician or trained medical technical assistant.
Although Gram stain seems like a medical image analysis
problem, to the best of our knowledge, only 1 research paper
[2] has used the deep learning method to automate the Gram
stain analysis. One of the challenges is that microbial pathogens,
particularly gram-negative organisms, and the background
material, such as bloodstains, look highly similar on a slide.
Furthermore, in cases of a low density of bacteria in a clinical
sample, the manual search by microscopy is tedious and will
only examine a fraction of the microscope slide, and thus may
be error-prone.

Smith et al [2] achieved 94.9% classification accuracy out of
468 Gram-stained slides from positive blood cultures. The
respective sensitivities and specificities were 98.4% and 75.0%
for gram-positive cocci in chains and pairs, 93.2% and 97.2%
for gram-positive cocci in clusters, and 96.3% and 98.1% for
Gram-negative rods. The authors reused the pretrained model
called Inception-v3 [3] and retrained the last layer with their
image data (100,213 image crops of 146×146 pixels for training
and testing) instead of constructing an end-to-end model from
the scratch. This approach is called transfer learning [4] because
it reuses precomputed model parameters. The major advantage
of transfer learning is that it is able to reduce computational
costs for the model training.

Despite the high accuracy achieved by Smith et al, there are
still many open questions to be addressed. With regard to
modeling, transfer learning could be improved with fine-tuning
[5] instead of modifying only the last layer. Fine-tuning is a
type of transfer learning that allows one to adjust the ratio of
retraining layers. This is highly relevant to Gram stain
classification because Inception-v3 was constructed with
ImageNet [6], which contains 1.2 million nature images and
1000 image classes, such as dogs and cats, that are unrelated to

Gram stain images. Therefore, increasing the number of
unfrozen (retraining) layers (ie, decreasing the number of
freezing layers) with Gram stain images is anticipated to yield
better results. With respect to computational performance, it
takes about 9 minutes to classify a whole-slide image of
28,032×28,032 pixels with a computer consisting of Intel Core
i7 (Intel Corp) with 32 GB of RAM and a Nvidia GTX 1070
graphics processing unit (GPU). The turnaround time for
multiple samples encountered in the medical laboratory would
not provide timely decision-making, although this solution can
run the job 24/7.

This study aims to design a rapid deep learning solution for
Gram stain interpretation without acquiring hardware resources,
and it provides the optimal proportion for the fine-tuning. The
hypothesis and the study design to evaluate the hypothesis will
be explained in the following section.

Methods

This section addresses the hypothesis, study design, data
collection and description, study population, statistical
considerations for nonbiased model construction and evaluation,
and tools in detail.

Study Design
This study does not investigate a clinical hypothesis but
performs an empirical evaluation of a deep learning framework
for Gram stain image interpretation. The hypothesis to be tested
is that the optimization of a deep learning framework will
perform better than a scale-up strategy with a single GPU. In
order to test this hypothesis, two strategies will be examined,
as shown in Figure 1. The scale-up strategy stacks up more
computer capabilities (model A, highlighted in blue). On the
other hand, the optimization strategy tunes the granular
configuration of a deep learning framework (model B, depicted
in green).

Figure 1. Two strategies will be compared. The lineage of model A is the implementation of the scale-up strategy (highlighted in blue). On the other
hand, the lineage of model B is the implementation of the optimization strategy (depicted in green). Model A is the base model with FPA framework,
while model B replaces the floating-point arithmetic with IAO. Each model is built on top of a predecessor model. For instance, model A1 is empowered
with a single GPU and model B1 is empowered with the optimal minibatch size. FPA: floating-point arithmetic. GPU: graphics processing unit. IAO:
integer arithmetic only.

In order to avoid model bias, 4 pretrained models (Mobilenet
[7] with versions 1 and 2, and Inception [3] with versions 3 and
4) will be evaluated. Mobilenet and Inception were originally
trained with ImageNet [6], which contains 1.2 million nature
images and 1000 classes. Therefore, it is necessary to retrain

them on the new data set, as described in the “Data Collection”
section, because Gram stain interpretation is barely linked to
the original task. The method that retrains a pretrained model
without changing network architecture is called fine-tuning.
Fine-tuning is a specific transfer learning technique that modifies
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more layers than the last layer, also known as the fully connected
layer, and their corresponding weights and biases. The optimal
proportion of the fine-tuning will be empirically determined in
this study. Concretely, 10 implementations will be evaluated,
with the proportions of frozen layer to unfrozen layer (retraining
layer) at 9:1, 8:2, ongoing up to 0:10 (from the shallow strategy
to the deep strategy). The computational performance will be
measured by time to achieve the target accuracy metric [8] of
95%.

Once the base model is implemented with Tensorflow [9]
(Google Corp) as described above, model A will be accelerated
with 2 approaches. Model A1 is the scale-up implementation
built on top of model A with a single GPU. In contrast, model

B is a mutated model of model A because it replaces
floating-point arithmetic with an integer arithmetic–only deep
learning framework called Tensorflow Lite [10]. Model B1 aims
to detect the optimal batch size for Gram stain classification.
Model B2 and B3 activate batch normalization and weight
normalization. Normalization penalizes large input numbers
and weights. Finally, model B4 prunes the model network by
adjusting the dropout rate, which speeds up the execution time.
These hyperparameters—batch size, batch normalization, weight
normalization, and dropout rate—are chosen based on the
findings from previous studies [11-14]. The specification of the
hyperparameter space is defined in Table 1. The boundary is
chosen to be wide to account for many possible combinations
of the hyperparameters.

Table 1. Specification of the hyperparameter space for the model B family. Minibatch size and dropout rate are quantified to avoid an exhaustive
search.

Quantified valuesOriginal value rangeHyperparameterModel

{32, 64, 128, 256, 512}{1-infinity}Minibatch sizeB1

{on, off}{on, off}Batch normalizationB2

{on, off}{on, off}Weight normalizationB3

{0, 0.1, 0.2, 0.3, 0.4, 0.5}{0-1}Dropout rateB4

The objective of this study is to understand the relation between
computation time and each hyperparameter, not to create a
hyperparameter optimization [15] that searches for a global
minimum or the local minima of hyperparameters.

Data Collection
This study will use 8728 Gram stain images from between 2015
and 2018 for modeling and images generated in 2019 for testing.

Data are archived in a workstation at the Institute for Clinical
Chemistry at the Medical Faculty Mannheim of Heidelberg
University, Germany. Sample images and labels are shown in
Figure 2. The sizes of the cropped images vary from 800×600
pixels to 1920×1080 pixels. Note that the image is not a
whole-slide image, but a crop of the interests—the
microorganisms and the slide background.

Figure 2. A sample image of Gram stain data. The image label does not have a link to personal information.
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The label data corresponding to the image are stored in a central
database for reporting purposes and extracted for this study.
Each image is associated with 2 labels: (1) Gram stain class (ie,
either gram-positive or gram-negative) and (2) a class for the
genus. The genus label includes 5 of the most frequently
encountered germs: (1) Staphylococcus, (2) Escherichia, (3)
Streptococcus, (4) Enterococcus, and (5) others, for the rest of
the germs that are rarely presented. This setting prevents a
potential risk of identifying a patient with an extremely rare
microorganism. Of the 8728 images, 446 images (5.11%) are
associated with multiple classes. These images with multiple
class labels are excluded because object recognition, that is,
bacterial differentiation, is beyond the scope of this study.

Study Population
The population for this study is a group of sepsis patients, whose
blood samples contain at least one harmful bacterium, such as
Staphylococcus, Escherichia, or Streptococcus. This study does
not recruit control and treatment groups. However, a set of
gram-positive images would be regarded as one group, while
gram-negative images would be regarded as a comparison group
for this study. This is a retrospective data analysis reusing an
archived image data set, as described in the “Data Collection”
section.

Statistical Analysis
This section will address and describe the 3 underlying statistical
considerations towards a solid study design: (1) the class
balancing strategy for the input data set, (2) the proper split
ratio for training and evaluation, and (3) the metric for the model
evaluation.

Class Balancing
Imbalanced input data sets are a common limiting factor that
degrades model quality. Chawla et al [16] systematically proved
that data augmentation can improve the imbalanced class
problem and demonstrated the benefits. In the classification of
bone lesions from x-ray images, Gupta et al [17] mitigated the
small number of positive samples by using data augmentation.
In the given image data available for this study, gram-positive
results are twice as frequent as gram-negative results. In order
to balance the class proportion, this study will apply the data
augmentation technique, which enriches the data set by
cropping, rotating, zooming, and flipping the given images.

Split Ratio
The data set will be split into a training set, a hold-out
development set, and a test set. The hold-out development set
is different from the test set, as the development set will only
be used for tuning the model parameters in order to not bias
classification. The training set for deep learning algorithms is
increased to 99% of the entire data set when there are more than
a million data points. However, this study will follow best
practice in machine learning, in which the splitting ratio is 60%,
20%, and 20% [18], because the available data points for this
study are 8728 images.

Cross-validation is not used in this study for model validation.
Cross-validation estimates the performance of the model
statistically, but it is not the chosen method for evaluating a

deep learning model. For instance, a 10-fold cross-validation
creates a model with 9 folds and tests the model with the
hold-out data (1 fold) 10 times. When we evaluate the model
with 100 whole-slide (28,032×28,032 pixels) images, each round
will take at least 900 minutes with a workstation powered by
Intel Core i7 with 32 GB of RAM and a Nvidia GTX 1070 GPU,
which is the same hardware setting and the same image size
used in the study by Smith et al [2]. For the 10-fold
cross-validation, it would take more than 6 days to evaluate 1
model, which is beyond the capacity of the workstation.

Metric for Evaluation
Despite considerable efforts that have been devoted to deep
learning research, not many studies consider the computational
efficiency, but focus solely on model evaluation. In order to
provide more insightful information, this study will evaluate
models with the classical metrics, such as accuracy, confusion
matrix, and area under curve, as well as the training and testing
times of models, to achieve the target accuracy proposed by the
Stanford Data Analytics for What’s Next project team [8].

Apparatus
This study will use Tensorflow [9] (floating-point arithmetic
framework) and Tensorflow Lite [10] for deep learning
solutions. Both of these frameworks are open source tools
developed by the Google Brain team, and they are able to
accelerate deep learning calculation by using multicore central
processing units (CPUs) and GPUs. With regard to a
model-debugging tool, TensorBoard will be used to graphically
track all execution history.

All solutions will be developed and deployed in the data center
at the Heinrich-Lanz-Center for Digital Health. The hardware
configuration for this study is one Intel Xeon Silver 4110 CPU
(Intel Corp), one Tesla V100 PCIe 32 GB GPU (Nvidia Corp),
and 189 GB memory. The server is virtualized by Docker
technology (Docker Inc) [19] for reproducible research.

Results

This study will provide an empirical guideline on how to
accelerate a high-performance deep learning model without
losing predictive power. Concretely, 2 results will be
highlighted: (1) the performance improvement of an integer
arithmetic–only deep learning framework for Gram stain image
classification and (2) the optimal setting of fine-tuning and
hyperparameters for 4 pretrained models (Mobilenet version 1
and 2 and Inception version 3 and 4). All models and the code
for training and evaluation will be freely accessible in a public
repository for reproducible research.

As of October 2019, this study has been approved by the
institutional review board of Medical Faculty Mannheim of
Heidelberg University, and the image data for the retrospective
data analysis are available. The results are planned to be
announced in the first quarter of 2021.
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Discussion

Limitations
Distributed computing across multiple machines will not be
covered in this study. Although it is the usual method to process
big data, it is not always the most efficient choice to process
the data. According to Boden et al [20], distributed systems are
surprisingly inefficient in training machine learning models
compared with a single workstation. The size of the input data
for this study is 25 GB and it fits into the capacity of a
standalone workstation. In future work, we would like to study
Apache Spark [20], which enables distributed machine learning
model training when the data do not fit into the memory of a
single computer.

This study does not aim to propose novel neural network
architecture, which requires many days of GPU processing time
with state-of-the-art computational infrastructure that is not
available within the scope of this project. Also, designing an
outperforming architecture for image classification is a saturated
topic, as many researchers have devoted their endeavors to this
problem in the last decade. Nevertheless, for those who are
interested in this topic, Elsken et al published a state-of-the-art
review paper [21] that provides an overview of existing works
and categorizes them into 3 dimensions.

Risk of Project Failure
An insufficient amount of image data could lead to an
underpowered deep learning solution. The proper input data
size is still an open question in the computer vision community.
The answer is, “it depends.” It depends on the number of classes,
image size, image quality, and complexity of the problem. For
instance, classifying a black image versus a white image
demands fewer input data compared with classifying a
gram-positive image versus a gram-negative image.

In medical data analysis, power analysis is widely applied for
determining the minimum sample size required. Unfortunately,
power analysis is not applicable to unstructured data such as
images. A rule of thumb for a good input size is 1000 images
per class [21], which was the basis of an object recognition
competition that was part of the Pascal Visual Object Classes
challenge [22]. This study is anticipated to have low failure,
since about 5800 gram-positive labeled images and 2700
gram-negative images are available for modeling.

Data Protection Considerations
Although this study does not use any personal information for
data analysis, the name of the input data consists of a unique
identifier for the experiment. This experiment identifier harbors
a remote risk of linking back to personal information in the
database. In the interest of data protection, this identifier is
anonymized and securely stored at the Heinrich-Lanz-Center
for Digital Health , which is protected by the hospital network
firewalls. Unlike data pseudonymization, which transforms the
identifier, data anonymization is an irreversible technique that
removes the identifier permanently. The anonymized data will
be archived for reproducibility.

The study will comply with the latest version of the Declaration
of Helsinki [23] and Professional Code for Physicians in
Germany. Patient names and other personal data are subject to
the legal requirements concerning confidential medical
communication. They comply with European Directive 2016/679
of the European Parliament and of the Council of 27 April 2016
on the protection of individuals with regard to the processing
of personal data and on the free movement of such data, the EU
General Data Protection Regulation and the German Federal
Data Protection Act, and the State Data Protection Act
Baden-Württemberg.
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