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Abstract

Background: The importance of identifying people with diabetes and progressive kidney dysfunction relates to the excess
morbidity and mortality of this group. Rates of cardiovascular disease are much higher in people with both diabetes and kidney
dysfunction than in those with only one of these conditions. By the time these people are identified in current clinical practice,
proteinuria and renal dysfunction are already established, limiting the effectiveness of therapeutic interventions. The identification
of an epigenetic or blood metabolite signature or gut microbiome profile may identify those with diabetes at risk of progressive
chronic kidney disease, in turn providing targeted intervention to improve patient outcomes.

Objective: This study aims to identify potential biomarkers in people with diabetes and chronic kidney disease (CKD) associated
with progressive renal injury and to distinguish between stages of chronic kidney disease. Three sources of biomarkers will be
explored, including DNA methylation profiles in blood lymphocytes, the metabolomic profile of blood-derived plasma and urine,
and the gut microbiome.

Methods: The cross-sectional study recruited 121 people with diabetes and varying stages (stages 1-5) of chronic kidney disease.
Single-point data collection included blood, urine, and fecal samples in addition to clinical data such as anthropometric
measurements and biochemical parameters. Additional information obtained from medical records included patient demographics,
medical comorbidities, and medications.

Results: Data collection commenced in January 2018 and was completed in June 2018. At the time of submission, 121 patients
had been recruited, and 119 samples remained after quality control. There were 83 participants in the early diabetes-associated
CKD group with a mean estimated glomerular filtration rate (eGFR) of 61.2 mL/min/1.73 m2 (early CKD group consisting of
stage 1, 2, and 3a CKD), and 36 participants in the late diabetic CKD group with a mean eGFR of 23.9 mL/min/1.73 m2 (late
CKD group, consisting of stage 3b, 4, and 5), P<.001. We have successfully obtained DNA for methylation and microbiome
analyses using the biospecimens collected via this protocol and are currently analyzing these results together with the metabolome
of this cohort of individuals with diabetic CKD.

Conclusions: Recent advances have improved our understanding of the epigenome, metabolomics, and the influence of the gut
microbiome on the incidence of diseases such as cancers, particularly those related to environmental exposures. However, there
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is a paucity of literature surrounding these influencers in renal disease. This study will provide insight into the fundamental
understanding of the pathophysiology of CKD in individuals with diabetes, especially in novel areas such as epigenetics,
metabolomics, and the kidney-gut axis.

International Registered Report Identifier (IRRID): DERR1-10.2196/16277

(JMIR Res Protoc 2020;9(7):e16277) doi: 10.2196/16277
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Introduction

In 2011-2012, an estimated 1.7 million Australian adults had
clinical and biochemical features of Chronic Kidney Disease
(CKD), with similar numbers of males and females affected
[1]. As kidney disease is mostly asymptomatic, the majority of
people are unaware they have this chronic condition. Therefore,
opportunistic testing in people with identifiable risk factors is
of paramount significance to the individual’s health and
Australia’s health economy. One of the leading risk factors for
CKD is diabetes mellitus (DM), both type I and type II, which,
together with associated micro and macrovascular complications,
have reached epidemic proportions in Australia [2]. The
prevalence of CKD is about three times higher in those with
diabetes compared to those without [3]. One of the major
microvascular complications of diabetes is kidney injury, termed
diabetic chronic kidney disease. It is characterized by persistent
albuminuria, proteinuria, and eventual decline in kidney function
(estimated glomerular filtration rate of less than 60 mL/min/1.73

m2).

Among people with diabetes and CKD, the rate of
cardiovascular events is more than twice the rate of those with
diabetes alone [4]. Cardiovascular causes are the leading cause
of mortality in people with diabetes and kidney disease, and
this is more likely than the progression to end-stage renal disease
(ESRD) [5]. These problems are only projected to escalate,
given the growing epidemic of diabetes and obesity in Australia
and worldwide.

Epigenetics is the study of a range of biochemical processes
that regulate gene expression and phenotype in the absence of
underlying alterations to the DNA sequence [6]. Epigenetic
mechanisms play a crucial role in differentiation, cell
specification, and function and may be regulated by external
cues such as exposure to environmental pollutants and poor
dietary choices. Consequently, this can induce abnormal
metabolic phenotypes that can be further compounded by genetic
susceptibility [7]. DNA methylation (DNAm) is the most studied
epigenetic marker and is highly stable due to the covalent link
to the underlying DNA. DNA methylation usually occurs at
5′-cytosines (5mC) of CpG dinucleotides. The regions of DNA
with a higher number of CpG clusters are designated “CpG
islands” and are generally methylated in a tissue-specific
manner. Low methylation status of promoter CpG islands is
associated with gene expression, while a high methylation status
causes repression of transcription [8].

Multiple factors such as inflammation, accelerated oxidative
stress, accumulation of toxins, and aberrant metabolism are

involved in the progressive deterioration of kidney function.
Abnormal epigenetic mechanisms may be involved in mediating
the likely gene-environment interactions underlying diabetes
and chronic kidney disease [9]. This area of research is novel
as we now know that pro-inflammatory and pro-fibrotic genes
can be regulated by hyperglycemia via epigenetic mechanisms
in vascular cells, monocytes, and mesangial cells [10]. The
epigenetic mechanisms involved in the regulation of gene
expression, including DNA methylation, appear to play a pivotal
role in the development of diabetes-associated complications
[11].

Metabolomics is the large-scale study of small molecules
referred to as metabolites (such as sugars, amino acids, and
lipids) in a given organism. Just as each individual will have a
unique epigenetic profile, each will also have a characteristic
metabolomic profile, leading to the concept of personalized
metabolomics. In the future, this may provide the ability to track
the trends of individual metabolomes over time, thus enabling
personalized drugs and improved treatment strategies. Such
personalized treatment is likely to be more effective than current
medical population-based approaches. Metabolomic approaches
are particularly promising in nephrology research as a
consequence of the significant and varied impact kidney function
has on circulating metabolite levels and because the metabolites
may themselves play functional roles in CKD pathogenesis and
its complications [12]. In experimental studies, metabolomics
has been used to identify a signature of decreased mitochondrial
function in diabetic chronic kidney disease, and these studies
have outlined new therapeutic options [12].

Each individual’s microbiome composition is thought to be
unique and influenced by genetics, geographical location, diet,
age, and exposure to antibiotics, in addition to factors
operational in early life such as mode of delivery and nature of
early feeding. Gut bacteria play a crucial role in food digestion
and nutrient absorption. More recently, the role of the gut in
modulating the immune system has been recognized, and
dysbiosis has subsequently been linked to an increasing number
of non-communicable diseases such as diabetes, obesity, and
heart disease.

Kidney disease is associated with inadequate nutrition, frequent
use of antibiotics, metabolic acidosis, and volume overload.
These factors are associated with microbial dysbiosis and may
also affect gastrointestinal permeability, which together may
account for the systemic inflammation that is associated with
and contributes to worsening CKD and cardiovascular disease.
CKD alters gut microbiota and contributes to dysbiosis. Vaziri
et al reported altered gut microbiota composition in people with
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CKD: specifically, they noted lower numbers of
Lactobacillaceae and Prevotellaceae families and 100 times
higher Enterobacteria and Enterococci species [13].

The primary aim of this study is to compare DNA methylation,
blood and urinary metabolomic, and gut microbiome profiles
between people with diabetes and various stages of CKD. A
component of this aim is to determine whether there are distinct
profiles at each stage of diabetic CKD.

Methods

A sample size of 120 provides 80% power to detect a minimum
correlation of 0.25 between epigenetic/metabolomics and gut
microbiome factors and the stage of diabetic kidney disease
using a two-sided hypothesis test with a significance level of
.05. A correlation of 0.25 is considered a moderately small effect
size, and as such, the target sample size has enough power to
investigate the primary research question.

The sample size of 120 will also provide more than 90% power

to detect an R2 effect size of 0.20 (moderately small effect size)
in a multivariate linear regression setting using an F test with
a significance level (alpha) of 0.05.

This cross-sectional study design included a study population
of 121 adults with diabetes and CKD stages 1, 2, 3a, 3b, 4, and
5. Participants were recruited from a single site, the Austin
Health outpatient diabetes clinic, Victoria, Australia.
Approximately 40 patients attend this clinic per week, and it
took 6 months to recruit 121 participants. Patient recruitment
commenced in January 2018 and was completed by the end of
June 2018. Patients who presented to this clinic were offered
the option to participate in the study and provided consent to
the collection of clinical information, archiving and use of blood,
urine, and stool samples, for research into the complications of
diabetes.

All biological samples and data were de-identified and assigned
a study number at Austin Health. Samples (other than stool
samples) were transported from Austin Health to the Murdoch
Children’s Research Institute (MCRI), Melbourne, for
processing, analysis, and storage. Stool samples were transported
on dry ice to the Metabolic Research Unit, Deakin University,
Geelong for processing, analysis, and storage. Electronic data
will be kept indefinitely to allow for continued analyses.

Study Population and Recruitment
Participants (N=121) were recruited from the Austin Health
outpatient diabetes clinic. The principal investigator approached
patients while they waited for their appointment. The aims of
the study were explained, and they were asked if they had an
interest in knowing more information about the study. Those
interested were provided with a participant information
statement and consent form as well as a stool collection kit to
be brought to their next diabetes clinic appointment.

Inclusion and Exclusion Criteria
Participants qualified for inclusion if they were aged ≥18 years
and diagnosed with diabetes and CKD stages 1, 2, 3a, 3b, 4, or
5.

Participants were excluded if they were aged <18 years, had a
history of renal transplant, a single kidney, diabetes secondary
to pancreatic pathology, steroid medication-induced diabetes,
presence of non-diabetic kidney disease, active drug or heavy
alcohol use, an active malignancy within the past five years,
inflammatory bowel disease, were pregnant or breastfeeding,
or who had a BMI <20 or >40.

Data Collection

Patient Information
Participant data inclusive of age, gender, height weight, blood
pressure, medical comorbidities, duration of diabetes, stage of
CKD and its associated complications, medications, and
pathology results were collected. The anthropometric data were
obtained on the day of the clinic visit while the remainder of
the patient’s information was gathered via access to Austin
Health’s electronic medical records. All of this selected
information was then entered into the study database.

Sample Storage

Serum/Plasma samples

Peripheral blood was collected at each outpatient clinic visit by
venepuncture for assessment of epigenetics and metabolomics
profiles. A total of 15mL of blood was collected at each visit:
10 mL in a 10-mL coagulant tube (for serum) and 5 mL in a
5-mL ethylene diamine tetraacetic acid (EDTA) anticoagulant
tube (plasma, white blood cells). Samples were transported to
the Austin Health laboratory within two hours of collection for
processing by the principal investigator. The clot was initially
separated from the 10ml coagulant tube. Subsequently, the
10-mL coagulant tube (for serum) was centrifuged at 3500 rcf
at 4°C. The serum was separated into 0.5-mL aliquots. The clot
and serum aliquots were then stored at –80°C. The 5-mL EDTA
anticoagulant tube was also centrifuged at 3500 rcf at 4°C. The
resultant plasma was separated into 0.5-mL aliquots, and the
buffy coat separated into 0.2-mL aliquots. All samples were
stored at –80°C.

Urine Samples

A spot urine sample was collected at each outpatient diabetic
clinic visit and transported to the laboratory within 24-48 hours
of collection. The samples were centrifuged at 3500 rcf at 4°C
and then aliquoted into 5-mL tubes and stored at –80°C within
30 mins of processing. Subsequently, the urine and plasma
samples were sent to Nightingale (Finland) for metabolomic
biomarker analysis.

Stool Samples

Following collection in a specimen container, the samples were
aliquoted into smaller 1.5-mL Eppendorf tubes before freezing
at –80°C, then stored for DNA extraction to avoid multiple
freeze/thaw cycles. The stool sample volume required for
microbiome analysis was about 0.5-1.0 g.

Data Generation
DNA methylation profile: Genomic DNA was extracted from
blood lymphocytes (buffy coat) for methylation analysis.
Peripheral blood was collected from Austin Health and
transported to MCRI. Buffy coats were lysed with proteinase
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K for 2 hours, and the DNA was extracted using the Qiagen
QIAamp DNA Mini spin kit (Ref 51306) according to the
manufacturer’s protocol. DNA was quantified, and purification
assessed by Qubit fluorometric quantitation (Thermo Fisher).

Genomic DNA (1000 ng) from adult buffy coat samples were
randomized into 96-well plates and sent to the Australian
Genome Research Facility (AGRF, Victoria) for sodium bisulfite
treatment and genome-wide methylation analysis using Illumina
InfiniumMethylationEPIC BeadChips (HM850K) [14]. The
EPIC array measures DNA methylation at more than 850,000
CpG sites and covers all gene promoters, gene bodies, and
ENCODE-assigned distal regulatory elements (Encyclopedia
of DNA elements) [15]. Quality assessment was performed by
QuantiFluor, and a subset of samples was resolved on a 0.8%
agarose gel at 130 V for 60 minutes. Samples were then
normalized to approximately 500 ng of DNA in 45 μL and
bisulfite converted with the Zymo EZ DNA Methylation kit.
All samples were above 860,000 detected CpG sites (P<.01).
Raw IDAT files were received on a hard disk from AGRF and
used for data analysis.

In order to assess blood and urine metabolites, plasma was
isolated from peripheral blood and corresponding urine samples
sent to Nightingale (Finland) for metabolomic biomarker
analysis. This platform analyzes metabolites using nuclear
magnetic resonance (NMR) spectroscopy, which is an
NMR-based metabolomics platform [16]. Robotic sample
preparation is followed by spectral acquisition in a fully
automated manner. The NMR platform has been used to profile
approximately 350,000 blood samples in over 1000
epidemiological and clinical studies. The biomarker
measurements are acquired from native serum or EDTA plasma
and are possible with 100 μL to 350 μL sample volume. The
platform provides quantification of 228 metabolic measures,
which are quantified in absolute concentrations (ie, mmol/L)
[16].

In order to assess the gut microbiome, stool samples were sent
on dry ice to the Metabolic Research Unit, Deakin University,
Geelong, where they were stored in a –80°C freezer. DNA was
extracted using the commercial Qiagen QIAamp DNA Stool
Mini Kit (Ref 51504) according to the manufacturer’s protocol.

DNA quantity and purity were assessed using Qubit (Thermo
Fisher).

The Australian Genome Research Facility performed PCR
amplification and sequencing. PCR amplicons were generated
using the primers and conditions outlined in Table 1.

Thermocycling was performed on an Applied Biosystem 384
Veriti using AmpliTaq Gold 360 Mastermix (Life Technologies,
Australia) for the primary PCR. The first stage PCR product
was purified using magnetic beads, and samples were visualized
by electrophoretic separation in a 2% Sybr Egel (Thermo
Fisher). A secondary PCR to index the amplicons was performed
with TaKaRa Taq DNA Polymerase (Clontech). The resulting
amplicons were purified using magnetic beads, quantified by
fluorometry (Promega Quantifluor), and normalized. The
equimolar pool was purified a final time using magnetic beads
to concentrate the pool and then measured using a
High-Sensitivity D1000 Tape on an Agilent 2200 TapeStation.
The pool was diluted to 5 nM, and molarity was confirmed
using a High-Sensitivity D1000 Tape, then sequenced on an
Illumina MiSeq with a V3, 600 cycle kit (2 × 300 base pairs
paired-end).

Paired-end reads were assembled by aligning the forward and
reverse reads using PEAR (version 0.9.5) [17]. Primers were
identified & trimmed. Trimmed sequences were processed using
Quantitative Insights into Microbial Ecology (QIIME 1.8) [18],
USEARCH (version 7.1.1090) [19,20], and UPARSE [21]
software. USEARCH sequences were quality filtered, and
full-length duplicate sequences were removed and sorted by
abundance. Singletons or unique reads in the data set were
discarded. Sequences were clustered and chimera filtered using
the “rdp_gold” database as the reference. Reads were mapped
back to OTUs with a minimum identity of 97% to obtain the
number of reads in each OTU. QIIME taxonomy was assigned
using the Greengenes database (version 13_8) [22].

Demographic and clinical information stored on the Austin
Health patient database was accessed and recorded in the study
database. The information included but was not limited to blood
pressure, weight and BMI, eGFR, albumin to creatinine ratio,
medical comorbidities, and medication history. This information
was de-identified and given a study ID number corresponding
to their matched biological samples.
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Table 1. Primers and conditions used to amplify the 16S: V3-V4 target sequence.

DescriptionPrimers and conditions

Primer

341F-806RTarget

CCTAYGGGRBGCASCAGForward (341F)

GGACTACNNGGGTATCTAATReverse (806R)

Condition

16S: V3 - V4Target

29Cycle

95°C for 7 minInitial

94°C for 60 secDisassociate

50°C for 60 secAnneal

72°C for 60 secExtension

72°C for 7 minFinish

Results

This study was approved in July 2017 by the Human Research
Ethics Committee of Austin Health, Victoria, Australia
(HREC/17/Austin/166) and Deakin University, Geelong,
Australia. The study was funded in July 2017. Data will be
published in peer-reviewed medical and scientific research
journals and any molecular data published in the appropriate
public repositories. Data collection commenced in January 2018
and was completed in June 2018. At the time of this submission,
121 patients had been recruited. After sample quality control,
data were available for 119 patient samples. The proportion of
the 119 recruited patients in each stage of CKD is illustrated in
Table 2. The clinical and biochemical characteristics of our
patient cohort are shown in Table 3.

The majority of participants had type 2 diabetes (n= 99), while
20 had type 1 diabetes. Only 2 of the 20 patients with type 1
diabetes were characterized as having latent autoimmune
diabetes of adulthood (LADA). There were 83 participants in

the early diabetes-associated CKD group with a mean eGFR of

61.2 mL/min/1.73 m2 (early CKD group consisting of stages 1,
2, and 3a), and 36 participants in the late diabetic CKD group

with a mean eGFR of 23.9 mL/min/1.73 m2 (late CKD group,
consisting of stages 3b, 4, and 5) (P<.001). We chose to define
late diabetes-associated CKD as Stages 3b, 4, and 5 in
recognition of the marked increase in death, cardiovascular
events, and hospitalizations observed as eGFR decreased below

45 mL/min/1.73 m2 [23]. The mean age in the early CKD group
was significantly younger at 66.1 years versus 72 years in the
late CKD group (P=.01). There was a higher proportion of
males, with 50 out of 83 participants (60.2%) in the early CKD
group versus only 16 males out of 36 participants (44.4%) in
the late CKD group.

Biospecimens are currently being used for epigenetic,
metabolomic, and gut microbiome analyses. The results from
these respective analyses will be completed in June 2020 with
the publication of this work expected later this year.

Table 2. The proportion of patients in each stage of chronic kidney disease (N=119).

Patients, n (%)Disease stage

8 (7)Stage 1

49 (41)Stage 2

26 (22)Stage 3a

13 (11)Stage 3b

13 (11)Stage 4

10 (8)Stage 5

JMIR Res Protoc 2020 | vol. 9 | iss. 7 | e16277 | p. 5http://www.researchprotocols.org/2020/7/e16277/
(page number not for citation purposes)

Lecamwasam et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Clinical and biochemical characteristics of the patient cohort.

P valueLate chronic kidney disease (group 2)Early chronic kidney disease (group 1)Patient characteristics

.0172.00 (11.5)66.14 (11.5)Age (years), mean (SD)

.1616.00 (44.4)50 (60.2)Male, n (%)

.24Type of diabetes, n (%)

3 (8.3)15 (18.1)Type 1

33 (91.7)66 (79.5)Type 2

0 (0.0)2 (2.4)LADAa

.1233.00 (11.2)18.71 (11.0)Duration of DBMb (years), mean (SD)

.0634 (94.4)65 (78.3)Hypertension, n (%)

.9115 (41.7)32 (38.6)Diabetic retinopathy, n (%)

.7215 (41.7)30 (36.1)Cardiovascular disease, n (%)

.1410 (27.8)12 (14.5)Peripheral vascular disease, n (%)

.5531 (86.1)66 (79.5)Dyslipidemia, n (%)

.414 (11.1)16 (19.3)Depression, n (%)

.51Smoking status, n (%)

24 (66.7)46 (55.0)Nonsmoker

10 (27.8)30 (36.0)Ex-smoker

2 (5.6)7 (8.4)Current smoker

.5828.53 (7.9)29.44 (7.9)BMI (kg/m2), mean (SD)

.26121.09 (50.0)109.58 (49.7)SBPc (mmHg), mean (SD)

.5966.20 (20.1)63.38 (27.2)DBPd (mmHg), mean (SD)

.0688.75 (53.7)108.60 (52.3)Hbe (g/L), mean (SD)

<.00123.89 (12.0)61.17 (22.8)eGFRf (mL/min/1.73 m2), mean (SD)

.697.66 (1.7)7.51 (1.8)HbA1c
g (%), mean (SD)

.253.74 (1.0)4.00 (1.1)TCh (mmol/L), mean (SD)

.541.78 (0.9)1.89 (0.9)LDLi (mmol/L), mean (SD)

.2883.71 (178.06)20.57 (73.27)Urine albumin/creatinine ratio, mean (SD)

.354.15 (13.85)0.28 (1.57)Urine protein/creatinine ratio, mean (SD)

aLADA: latent autoimmune diabetes of adulthood.
bDBM: diabetes mellitus.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
eHb: hemoglobin.
feGFR: estimated glomerular filtration rate.
gHbA1c: glycated hemoglobin.
hTC: total cholesterol.
iLDL: low-density lipoprotein.

Discussion

In our preliminary data, we have shown the proportion of
individuals with diabetes and various stages of CKD. We have
illustrated the clinical and biochemical characteristics of our
patient cohort. With this protocol, we have obtained DNA for

methylation and microbiome analyses and are currently
analyzing these results together with the metabolome of our
patient group. There have been separate studies in the areas of
epigenetics [24], metabolomics [25], and the gut microbiome
[13] that have shown these biomarkers to be potential indicators
of renal dysfunction and markers of renal prognosis. However,
no studies have simultaneously investigated the possible
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combined roles of epigenetics, metabolomics, and gut
microbiome, especially across all stages of chronic kidney
disease in individuals with diabetes.

One of the strengths of this study protocol is the depth of
cross-sectional data across epigenetics, metabolomics, and the
gut microbiome as well as varying biospecimens inclusive of
serum, plasma, buffy coats, urine, and fecal samples, involving
the different stages of kidney disease. This broad scope will
enable a comprehensive investigation of the factors contributing
to and potential for biomarker identification in people with
diabetes-associated CKD. One of the limitations, however, of
this study design is its cross-sectional nature and small sample
size, especially in the late CKD group. Future prospective cohort
designs would necessitate larger sample sizes in each CKD
stage as well as longitudinal data collection.

The significance and clinical value of these potential biomarkers
are in determining whether the specific profiles across the three
domains could help to predict the stages of renal dysfunction,
especially if these are demonstrated to precede the change in
cellular or clinical phenotype. This protocol provides the first
step towards biomarker discovery for future longitudinal studies
that would enable longer-term patient follow-up. Demonstrating
such a change may lead to targeted, individualized patient
treatment and better patient outcomes. There is a paucity of
research exploring the clinical impact of epigenetics,
metabolomics, and the gut microbiome in renal disease. Our
research will generate data relating to epigenomic and
metabolomic analyses, which, together with an understanding
of the kidney-gut microbiome axis, will be a means of
identifying potential novel biomarkers for people with
progressive diabetic CKD.
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