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Abstract

Background: Human movement is one of the forces that drive the spatial spread of infectious diseases. To date, reducing and
tracking human movement during the COVID-19 pandemic has proven effective in limiting the spread of the virus. Existing
methods for monitoring and modeling the spatial spread of infectious diseases rely on various data sources as proxies of human
movement, such as airline travel data, mobile phone data, and banknote tracking. However, intrinsic limitations of these data
sources prevent us from systematic monitoring and analyses of human movement on different spatial scales (from local to global).

Objective: Big data from social media such as geotagged tweets have been widely used in human mobility studies, yet more
research is needed to validate the capabilities and limitations of using such data for studying human movement at different
geographic scales (eg, from local to global) in the context of global infectious disease transmission. This study aims to develop
a novel data-driven public health approach using big data from Twitter coupled with other human mobility data sources and
artificial intelligence to monitor and analyze human movement at different spatial scales (from global to regional to local).

Methods: We will first develop a database with optimized spatiotemporal indexing to store and manage the multisource data
sets collected in this project. This database will be connected to our in-house Hadoop computing cluster for efficient big data
computing and analytics. We will then develop innovative data models, predictive models, and computing algorithms to effectively
extract and analyze human movement patterns using geotagged big data from Twitter and other human mobility data sources,
with the goal of enhancing situational awareness and risk prediction in public health emergency response and disease surveillance
systems.

Results: This project was funded as of May 2020. We have started the data collection, processing, and analysis for the project.

Conclusions: Research findings can help government officials, public health managers, emergency responders, and researchers
answer critical questions during the pandemic regarding the current and future infectious risk of a state, county, or community
and the effectiveness of social/physical distancing practices in curtailing the spread of the virus.
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Introduction

COVID-19, which is caused by SARS-CoV-2, was originally
detected in Wuhan, China, in December 2019. On March 11,
2020, the World Health Organization (WHO) declared the
COVID-19 outbreak a pandemic due to its rapid spread to
several geographic regions [1]. To limit the spread of
COVID-19, unprecedented measures, such as mass quarantines
of cities (eg, Wuhan, China) and lockdowns of entire countries
(eg, Italy), have been taken. Due to the rapid human-to-human
transmission of COVID-19, models or measurements that
contribute to increased knowledge about potential infectious
risk at different geographic levels can play an essential role for
residents, medical workers, and governments. Such models can
help local authorities and communities better allocate resources
and efforts at a community level. Meanwhile, it is equally
important for policy makers and emergency responders to
understand how people practice social/physical distancing and
how effective these control measures are at curbing the spatial
propagation of the virus.

Human movement is an important driver of the geographic
spread of infectious diseases [2]. For example, studies on severe
acute respiratory syndrome (SARS) [3], Middle East respiratory
syndrome (MERS) [4], and influenza H1N1 [5,6] all confirmed
that airline travel was a major contributor to virus transmission
on a large spatial scale. From a public health perspective,
prediction and control of the spread of infectious diseases
benefits greatly from our growing capacity to quantify human
movement [7]. COVID-19 has a high human-to-human
transmission rate and can be transmitted during the preclinical
incubation period. So far, limiting and tracking human
movement during the outbreak has proven effective at reducing
the spread of COVID-19 in different countries [8-10]. In this
sense, monitoring and analyzing human movement patterns or
population flows at different spatial scales (global, country,
state, county, and community) is critical for us to gain a better
understanding of the current and future infectious risk at a
population level during the pandemic. Such situational
awareness can help governments at all levels (local, state,
federal, and international) proactively reallocate medical
supplies and medical workforces to more vulnerable areas,
enabling better preparation and readiness for disease outbreaks.

Existing studies have used various data sources to quantify
human movement and model the spread of infectious diseases.
On a large scale, airline data are important sources in
understanding global transmission of infectious diseases. For
example, global spread of SARS simulation models have been
generated with airline data [11]. Although airline data deepened
our understanding of the transmission mechanism of infectious
diseases at large geographical scales, the data have shown a
limited usefulness for understanding transmission across short
distances [12,13]. On a local or regional scale, mobile phone
data have been used as a measurement of human mobility; such

data improved our understanding of spatial transmission patterns
of malaria [14], cholera [15], and influenza [16]. Due to privacy
issues, mobile phone data are generally limited in terms of
accessibility and are often limited to a local region or one
country; therefore, this data cannot provide systematic global
coverage [17]. Besides mobile phone data, commuting patterns
derived from census data also play an important role in
understanding virus spread patterns on a local scale [13,18].

With the increasing prevalence of location-enabled social media,
geotagged Twitter data have been widely used in human
mobility studies (eg, [19-21]), yet limited research has been
conducted to validate the potential and limitations of these data
for studying human movement at different geographic scales
(eg, from global to local) in the context of global infectious
disease transmission. Meanwhile, the recent development of
artificial intelligence (AI) has proven useful for diagnosis, drug
analysis, data collection, and outbreak prediction [22]. Various
types of neural network algorithms have demonstrated capacity
in predicting HIV epidemics [23], influenza-like illness [24],
and SARS [25]. However, the majority of these AI-based
prediction algorithms have focused on mathematical models of
trend development and outbreak identification, in which limited
geospatial information (especially at different geographic scales)
is considered. The recent COVID-19 pandemic provides us with
a unique opportunity to explore innovative approaches to
effectively use big data from Twitter and AI-based algorithms,
and examine their efficiency in enhancing situational awareness
and risk prediction in public health emergency response and
disease surveillance systems.

By leveraging the interdisciplinary team’s collective expertise
in spatiotemporal modeling, big data analytics, infectious
disease, spatial epidemiology, and health promotion and
behavior modification, we propose to develop a novel
data-driven public health approach using big data from Twitter
coupled with other human mobility data sources and AI to
monitor and analyze human movement at different spatial scales
(from global to regional to local). With the proposed approach,
we aim to answer the following critical questions relating to the
COVID-19 pandemic:

1. Where are people coming from and going to during the
pandemic? We will answer this question by developing an
Origin-Destination-Time data cube (ODT cube) to
efficiently extract historical and near real-time population
flows from worldwide geotagged tweets.

2. What is the current and future infectious risk of a country,
state, or county? This will be estimated using a
spatial-temporal fused neural network considering historical
human movement patterns and real-time population flows.

3. How well are people following the social/physical
distancing orders? This question will be examined by
performing spatial-temporal aggregation of the ODT cube
at different spatial scales and temporal resolutions to
quantify human movement at different spatial scales.
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4. How effective is social/physical distancing for curtailing
the spread of the virus? We will answer this question by
conducting spatiotemporal and geostatistical analysis (eg,
regression and correlation) for the aggregated population
flows, the daily confirmed cases, and other factors such as
face mask policies.

The answers to these questions will be compiled as maps,
diagrams, news releases, technique reports, and peer-reviewed
journal articles.

Methods

Data Collection and Database
This project will collect the following 4 types of data worldwide
(where data are available): (1) geotagged Twitter data, (2) daily
confirmed COVID-19 cases at the available highest spatial
resolution for all countries, (3) the most recent socioeconomic
and demographic information (at the county level in the United
States and a similar level of administrative unit for other
countries), and (4) human movement information from other
mobility data sources, such as mobile phone–based mobility
data (eg, SafeGraph [26] and Descartes Labs [27]), the Google
Mobility report [28], and the Apple Mobility report [29]. We
have developed a computer program to stream geotagged tweets
using Twitter’s Standard (free) streaming application
programming interface (API). In addition, we will subscribe to
Twitter’s Decahose API for a limited time period, which delivers
a 10% random sample of real-time full Twitter streams [30].
Worldwide historical geotagged Twitter data collected by the
team over the past 5 years will be used to construct past
population flows and identify spatiotemporal patterns of human
movement. Building upon our previous work on indexing and
processing geospatial big data [31,32], we will develop a
scalable database to store and manage the aforementioned
multisource data sets. The database will be indexed with
multilevel spatial scales (eg, country, state, and county) and
temporal resolutions (eg, year, month, day, and hour) and will
be connected to our in-house Hadoop computing cluster for
efficient big data computing, analytics, and visualizations.

Analytic Approach

Develop an ODT Data Cube for Efficient Analysis of
Human Movement From Geotagged Tweets With
Varying Spatiotemporal Scales
Data cube has been widely used to model high-dimensional
spatiotemporal data (eg, [33,34]). We will develop an ODT data
cube as a high-level conceptual model for quantifying human
movement across different places or locations over time (Figure

1) from billions of geotagged tweets. The ODT cube will serve
as a foundation data model for efficiently conducting human
movement analysis at different spatial and temporal scales. In
the ODT cube, origin (O) and destination (D) are a set of places
or locations (eg, administrative boundaries such as county, state,
and country, or latitude/longitude grids) that can be displayed
on a map. Each cell in the data cube has a value that indicates
the number of people that moved from the origin location to
the destination location during a specific time period (eg, an
hour, day, or month). In other words, each cell value indicates
the connection (measured by population movement) between
two locations. Using the ODT cube, we can efficiently retrieve
the number of people that moved from Oi to Dj at time Tk.

In total, 3 types of matrices will be derived from the data cube:
the origin-destination (OD) matrix quantifies the population
flows between all the origin and destination locations during a
time period. The destination-time (DT) matrix captures the
number of incoming people to all destination locations from a
specific origin location over a series of times, while the
origin-time (OT) matrix captures the number of outgoing people
from all origins to a specific destination over a series of times.
In addition, the number of unique Twitter users can be calculated
for a specific location over time. This enables us to efficiently
conduct spatial-temporal aggregations of human movement at
varying spatial and temporal resolutions.

The OD matrix is an n ´ n matrix, where n is the number of
geographic entities included in the study. Column Ox and row
Dx are the same location (x). An entry vij in this matrix
represents the number of people moving from origin i to
destination j. It should be noted that human movements are
directional. Therefore, vij and vji stand for two different
spatiotemporal movements that are likely to have different
values. We define the values in the diagonal cells (grey cells in
the OD matrix), vii,as the number of unique Twitter users in
location i.

The process of constructing the ODT cube is extremely data-
and computationally intensive because we need to perform a
large number of point-in-polygon spatial operations, and the
output will contain billions of connections. We will leverage
our expertise in geospatial big data computing to perform the
computation using an in-house Hadoop-based computing cluster.
Based on the generated ODT cube, we will further derive a
number of indices to quantify human mobility at varying
spatiotemporal scales including, for example, the daily number
of Twitter visitors, daily number of movements (inflow, outflow,
intraflow), average travel distance, and place connectedness
index between two counties.
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Figure 1. Illustration of Origin-Destination-Time data cube for modeling human movement.

Develop Population-Level Infectious Risk Maps at
Different Spatial Scales Based on Population Flows to
Enhance Situational Awareness
The ODT cube quantifies human movement among different
places (eg, US counties or census tracts) during a given time
period. Knowing such movement information is essential for
assessing infectious risk at the population level in a given place.
We propose to model the current infection risk of a given place
(eg, county) by integrating the following information: (1)
population flows derived from the ODT cube during the recent
time period among all places (eg, past 14 days), (2) the number
of total COVID-19 cases for each place, and (3) socioeconomic
and demographic variables that relate to the infection risk of
that location (eg, a county’s population density and age and
race distributions).

We will create an infection risk index for each place by
combining the abovementioned factors. For example, suppose
that, based on the ODT cube, we observe a significant
population flow from county A to county B during the past week
and county A already has a number of COVID-19 cases, then
the infectious risk for county B is high (people from a highly
infected area are likely to carry the virus). Note that the real
scenario is more complex due to the fact that the risk of county

B is also affected by other counties with confirmed cases that
have connections with county A and that population movement
is not the only factor for infectious risk. In other words, the
infection risk of destination Dj can be considered a function of
local factors (Pj), combined with population flow from each
origin (v1j, v2j, …vnj) weighted by the number of cases at each
origin (I1, I2, ..., In; Figure 2A). A risk index will be calculated
for each location to produce an infectious risk map. Based on
the ODT data cube, risk map generation can be efficiently
implemented using matrix computation. Such risk maps would
be useful for targeting surveillance and outbreak control
activities for a region.

Besides modeling the infection risk of a location using the
incoming populations, we will also estimate the risk impact of
a location with confirmed cases on other locations. For example,
since Italy was severely infected at the early stage of the
pandemic, it would be helpful to understand where the outgoing
population from Italy traveled to. As illustrated in Figure 2B,
we will build a model that combines the population movement
information between the targeted location (Oi) and other
locations (D1, D2, ..., Dn), as well as other factors associated
with each location (P1, P2, ..., Pn). The output of the model will
be a map showing the potential impact of the incoming
populations from the targeted location (eg, Italy).

JMIR Res Protoc 2020 | vol. 9 | iss. 12 | e24432 | p. 4http://www.researchprotocols.org/2020/12/e24432/
(page number not for citation purposes)

Li et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Illustration of (A) infection risk modeling based on the incoming population to a location and (B) the impact modeling of an infected location
on other locations.

Develop a Predictive Model to Estimate Future Infectious
Risk Using a Fused Neural Network by Considering
Both Spatial Patterns and Temporal Trends of the
Population Movement
In this research task, we aim to explore the feasibility and
performance of a predictive model for future infectious disease
potential at the US county level based on the following
information: (1) near real-time human movement information
(from real-time Twitter data streams), (2) the daily case count
of each county (will be collected/compiled each day), and (3)
other factors such as socioeconomic and demographic
information.

Given the complex epidemiological and geographic processes
of different infectious factors, we propose to use deep learning
to explore complex infectious processes using the large volumes
and high dimensions of the input data. Deep learning is one
type of machine learning in AI. Unlike traditional machine

learning, in which the parameters of an algorithm (eg, support
vector machine) are configured by experts, deep learning
determines these parameters by learning the patterns in a large
amount of data based on artificial neural networks. Specifically,
we will develop a fused neural network that integrates two types
of neural networks, convolutional neural network (CNN) and
long short-term memory recurrent neural network (LSTM), to
consider spatial patterns and temporal trends simultaneously in
the predictive model (Figure 3). The fused neural network will
include a series of CNN layers in the front end followed by
LSTM layers with a Dense layer on the output. The locations
in the ODT cube (eg, counties) would be treated as pixels
(neurons) in the CNN network to capture spatial relationships
and local patterns, and the temporal trend will be predicted with
the LSTM network. Different combinations of socioeconomic
and demographic factors will be tested during the model
building, training, and validation process, and the combination
yielding the highest accuracy will be used in the final model.
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Figure 3. Conceptual architecture of the CNN-LSTM fused neural network for infectious risk prediction. CNN: convolutional neural network; LSTM:
long short-term memory recurrent neural network; ODT: Origin-Destination-Time.

Ethics and Dissemination
This research does not involve human subjects and received an
exempt review from the Institutional Review Board (IRB). All
data collected in this project are in the public domain. Twitter
data are collected using the official Twitter API. We are fully
aware of the potential privacy concerns related to handling
geotagged tweets, which contain location information and may
include some personal information provided by the users
directly. We have been following and will continue to follow
Twitter developer policies strictly when collecting and sharing
Twitter data. The raw individual tweets with exact latitude and
longitude will not be published in any format, including maps,
technical reports, or journal publications. All data collected in
this study will be stored in an in-house Hadoop computing
cluster hosted in a secure server room at the University of South
Carolina with firewall protection, two-factor authentication,
and endpoint security. The results of this project will be
disseminated as maps, summary graphics, news reports, research
articles, and interactive web portals.

Results

This project was funded as of May 2020. We have started the
data collection, processing, and analysis, and have built a spatial
web portal for sharing the human mobility data extracted from
geotagged tweets and SafeGraph data [35].

Discussion

Overview
In this paper, we report a research protocol that will use big data
from social media to derive information on human movement
or population flows to monitor the spatial spread of COVID-19,
quantify the effectiveness of control measures, and predict the
current and future infectious risk at various geospatial scales.
We believe geotagged Twitter data are sufficient for studying
population flows on a large spatial scale with low or medium
spatial resolutions, such as the movement between countries
and between states in the United States. For the county level,
our previous studies indicate that these data perform well for
examining human movement between different US counties
[36-38]. For finer resolutions than county, we have successfully
conducted human mobility studies at the census tract level [21]
and street/community level within a city [39]. However, we are
aware that studies at a spatial resolution higher than city or
county only work in highly populated areas since at this
resolution we can only use tweets with exact coordinates.
Considering this issue, we will only perform community-level
analysis for highly populated cities (eg, New York City) when
using Twitter-derived population flows.

Another limitation we would like to point out is that Twitter
data has intrinsic demographic and socioeconomic biases as
suggested in a few studies [40-42]. Despite this limitation,
Hawelka et al [19] confirmed that geotagged tweets are
exceptionally useful for quantifying country-to-country
population movement. Our recent study also suggests that the
county-level population movement derived from Twitter data
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can accurately reflect regular (eg, holidays) and nonregular (eg,
hurricanes) events [36]. The third issue is that Twitter users’
tweeting behavior and Twitter’s APIs and platform change over
time and may continue to change in the future, which affects
the volume of streamed geotagged tweets. For example, Twitter
removed support for precise geotagging in June 2019 [43] and
Twitter users may stop geotagging their posts due to privacy
concerns. To tackle the aforementioned limitations of geotagged
tweets, we will integrate human mobility data derived from
other aforementioned data sources including SafeGraph (which
provides US Census Block Group–level human movement
information) to better capture and quantify human movement
during the pandemic [44].

Conclusions
Human movement is among the essential forces that drive the
spatial spread of COVID-19. During a global pandemic,
monitoring and analyzing human movement patterns or
population flows is critical for us to gain a better understanding
of current and future infectious risk at the population level. This
research aims to use big data from a social media site (Twitter),
AI, and spatiotemporal analysis to monitor and model the spatial
spread of COVID-19 at different spatial scales (from local to
regional to global) through the lens of human movement. The
results of this study will not only provide enhanced situation
awareness for the government at all levels, but also offer
valuable contributions for building collective public awareness
of the role people play in the evolution of the COVID-19 crisis.

The findings of this research may also have implications for
policy by assisting the policy makers and general public to
evaluate the effectiveness of various control measures that aim
to reduce human movement during the pandemic. For example,
the debate about the true effectiveness of social distancing as a
public health tool for limiting COVID-19 transmission requires
mobility research to generate evidence-based guidance [45].
This is especially important in the context of mixed research
findings about COVID-19 aerosolization [40,46,47] and the
true effectiveness and costs of social distancing [48,49]. As
universities and schools reopen, and traditional socialization
activities like sporting and musical events resume, measuring
and tracking the impact of human mobility will take on greater
significance.

We hope that the results can help government officials, public
health managers, emergency responders, and researchers to
answer critical questions during the pandemic as elaborated
above. Although this research is a response to the current
COVID-19 pandemic, the proposed research will make
significant contributions to data sources, applications, models,
and methodology for a variety of human mobility studies. This
research is expected to have a broad impact on diverse fields
that can benefit from a better understanding of human movement
at varying spatial scales, such as infectious disease spread in
public health, transportation, tourism, and economics.
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