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Abstract

Background: Both chronic obstructive pulmonary disease (COPD) and asthma incur heavy health care burdens. To support
tailored preventive care for these 2 diseases, predictive modeling is widely used to give warnings and to identify patients for care
management. However, 3 gaps exist in current modeling methods owing to rarely factoring in temporal aspects showing trends
and early health change: (1) existing models seldom use temporal features and often give late warnings, making care reactive. A
health risk is often found at a relatively late stage of declining health, when the risk of a poor outcome is high and resolving the
issue is difficult and costly. A typical model predicts patient outcomes in the next 12 months. This often does not warn early
enough. If a patient will actually be hospitalized for COPD next week, intervening now could be too late to avoid the hospitalization.
If temporal features were used, this patient could potentially be identified a few weeks earlier to institute preventive therapy; (2)
existing models often miss many temporal features with high predictive power and have low accuracy. This makes care management
enroll many patients not needing it and overlook over half of the patients needing it the most; (3) existing models often give no
information on why a patient is at high risk nor about possible interventions to mitigate risk, causing busy care managers to spend
more time reviewing charts and to miss suited interventions. Typical automatic explanation methods cannot handle longitudinal
attributes and fully address these issues.

Objective: To fill these gaps so that more COPD and asthma patients will receive more appropriate and timely care, we will
develop comprehensible data-driven methods to provide accurate early warnings of poor outcomes and to suggest tailored
interventions, making care more proactive, efficient, and effective.

Methods: By conducting a secondary data analysis and surveys, the study will: (1) use temporal features to provide accurate
early warnings of poor outcomes and assess the potential impact on prediction accuracy, risk warning timeliness, and outcomes;
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(2) automatically identify actionable temporal risk factors for each patient at high risk for future hospital use and assess the impact
on prediction accuracy and outcomes; and (3) assess the impact of actionable information on clinicians’ acceptance of early
warnings and on perceived care plan quality.

Results: We are obtaining clinical and administrative datasets from 3 leading health care systems’ enterprise data warehouses.
We plan to start data analysis in 2020 and finish our study in 2025.

Conclusions: Techniques to be developed in this study can boost risk warning timeliness, model accuracy, and generalizability;
improve patient finding for preventive care; help form tailored care plans; advance machine learning for many clinical applications;
and be generalized for many other chronic diseases.

International Registered Report Identifier (IRRID): PRR1-10.2196/13783

(JMIR Res Protoc 2019;8(6):e13783) doi: 10.2196/13783
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Introduction

Three Major Gaps in the Current Predictive Modeling
Method for Implementing Care Management
COPD and asthma are chronic respiratory diseases incurring
heavy health care burdens on society, health care systems, and
payers. In the United States, COPD affects over 6.5% of adults,
is the third leading cause of death, and incurs 700,000 inpatient
stays, 1.5 million emergency room visits, and US $32 billion
in cost annually [1]. Asthma affects 8% of adults [2] and 9.6%
of children [3,4] and incurs 3630 deaths, 493,000 inpatient stays,
1.8 million emergency room visits, and US $56 billion in cost
annually [2,5]. As a service intended to prevent poor outcomes
such as hospitalization, care management is widely adopted to
provide tailored preventive care for COPD and asthma patients.
Purchased by most large employers and offered by almost all
private health plans [6-8], care management is a collaborative
process to evaluate, plan, implement, coordinate, and monitor
options and services to accommodate an individual’s health and
service needs [9]. In care management, a care manager calls a
patient regularly, helps arrange for medical appointments, and
schedules health and related services. Appropriate use of care
management can cut hospital use (emergency room visits and
inpatient stays) by up to 40% [7,10-15], lower cost by up to
15% [11-16], and enhance patient adherence, quality of life,
and satisfaction by 30% to 60% [10].

Predictive models are widely used, for example, by health plans
in 9 of 12 regions [17], as the best method [18] to warn of poor
outcomes and to identify COPD and asthma patients for care
management [6-8]. Multiple models have been built for
predicting the health outcomes of individual COPD and asthma
patients [19-28]. However, current modeling methods have 3
major gaps restricting their effectiveness owing to inadequate
use of temporal features showing trends and early health change.
A temporal feature, such as the slope of pulmonary function
across the last year, is an independent variable formed by
transforming longitudinal attributes.

Gap 1: Late Warning
Existing models for predicting the health outcomes of individual
COPD and asthma patients seldom use temporal features [19-28]
and often give late warnings, making care reactive and missing

opportunities for clinical and therapy teams to intervene early
to reduce the risk of poor outcomes. A health risk is often
identified at a relatively late stage of declining health, when the
chance of a poor outcome is high and resolving the issue is
difficult and costly. A typical model predicts patient outcomes
in the next, say, 12 months. For patients with imminent poor
outcomes, this does not warn early enough. If a patient will
actually be hospitalized for COPD next week, intervening now
could be too late to avoid hospitalization. If temporal features
were used, this patient could be identified a few weeks or
months earlier; when health decline is still at an early stage,
resolving the issue is easier and preventing hospitalization is
likely.

Gap 2: Low Prediction Accuracy
Models for predicting a patient’s health outcome and cost
typically have low accuracy. When projecting the health
outcome of a patient, the accuracy measure of area under the
receiver operating characteristic curve (AUC) is typically much
lower than 0.8 [19-28]. When projecting the health care cost of

a patient, the accuracy measure of R2 is typically lower than
25% [29,30], and the mean error is as big as the mean cost [31].
These large errors in prediction results create difficulty in
properly aligning care management’s use with the patients
needing it the most [10].

Care management can require over US $5000 per person per
year [11] and usually enrolls only 1% to 3% of patients because
of resource limits [32]. For patients predicted to have the worst
outcomes or the largest costs [10,33], care managers review
patient charts and manually make allocation decisions.

A small percentage of patients use most of the health care
resources and costs. The upper 20% of patients use 80% of the
resources and costs. The upper 1% use 25% [19,32,34].
Accurately identifying patients at high risk for poor outcomes
or large health care costs is critical for effective targeted
application of care management resources. Yet, Weir et al [33]
showed that in the upper 10% of patients who actually spent
the largest health care costs, over 60% of them were not included
in the upper 10% risk group identified by a predictive model.
In the upper 1% of patients who actually spent the largest health
care costs, around 50% and over 80% of them were not included
in the identified upper 10% and 1% risk groups, respectively.
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Assume the care management program could take 1% of all
patients. In this case, even if the care managers could afford to
examine the upper 10% risk group found by the predictive model
and manually make correct decisions for enrollment, the care
managers would still not find around half of the upper 1% of
patients who spent the largest health care costs. For COPD and
asthma, if we could identify 10% more of the upper 1% of
patients who spent the largest health care costs and enroll them
in care management, we could boost outcomes and spare
possibly up to US $120 million in COPD care [1] and US $210
million in asthma care each year [19-21]. In general, owing to
the large patient population, a small boost in accuracy will
benefit numerous patients and have a big positive impact.

Current models for predicting the health outcomes and health
care costs of individual COPD and asthma patients have low
prediction accuracy for several reasons:

1. Many temporal features with high predictive power are
either frequently unused in an existing model or yet to be
found. Google recently applied long short-term memory
(LSTM) [35], one kind of a deep neural network, to all the
attributes in the electronic health record to automatically
learn temporal features from longitudinal data [36]. For
forecasting each of the 3 outcomes: long hospital stay,
unanticipated readmissions within 30 days, and in-hospital
mortality, this increased the AUC by approximately 10%
[36]. Multiple other studies [37-39] showed similar results
for a variety of clinical prediction tasks. This aligns with
what has taken place in areas such as video classification,
natural language processing, and speech recognition, where
temporal features that LSTM automatically learned from
data outperform those mined from data by other methods
or specified by experts [40,41].

2. Although >40 risk factors for undesirable outcomes in
COPD/asthma have been identified [19,20,23,28,42-48],
an existing model usually uses only a few (eg, <10)
[19-24,26-28]. Existing models were often constructed
based on data obtained from clinical trials or old fashioned
electronic health records collecting limited variables [49].
No published model adopts all of the known risk factors
available in modern electronic health records collecting
extensive variables [49].

3. Environmental information such as air quality and weather
variables are known to impact COPD and asthma outcomes
[43,50-52], but with rare exceptions [25], are infrequently
used in existing models.

Gap 3: Lack of Information on Why Patients Are at High
Risk for Poor Outcomes and Possible Interventions to
Mitigate Risk
Before enrolling a patient, care managers need to know why
the patient is at high risk for a poor outcome and about possible
interventions to mitigate risk. Complex predictive models, which
include most machine learning models such as LSTM, give no
explanatory or prescriptive information. Frequently, a patient’s
records have many variables on hundreds of pages accumulated
over a long period of time [53]. Unlike physicians who see
patients from time to time, care managers often have not
previously seen the records when needing to make enrollment

decisions. When the model offers no explanation, busy care
managers often spend extra time reviewing the records to find
the reasons. This is time consuming and difficult.

A care manager may use subjective, variable judgment to form
a care plan, but may miss some suited interventions because of
2 factors:

1. Several reasons can make a patient at high risk for a poor
outcome. Each reason is shown by a feature combination
as a risk pattern. For instance, the ratio of inhaled steroid
to beta agonist dispensing to the patient decreased over 12
months and the sulfur dioxide level was ≥3 parts per million
for ≥5 days in the past week. Many features exist. Like any
human, an ordinary care manager can deal with ≤9
information items simultaneously [54], making it difficult
to identify all reasons from numerous possible feature
combinations.

2. Huge variation in practice, often by 1.6 to 5.6 times, appears
across care managers, facilities, and regions [34,55-58].

Missing suited interventions can degrade outcomes. Typical
automatic explanation methods [59,60] do not handle
longitudinal attributes and cannot fully address these issues.

Our Proposed Solutions
To fill the gaps for more COPD and asthma patients to receive
appropriate and timely care, we will (1) use temporal features
to provide accurate early warnings of poor outcomes and assess
the potential impact on prediction accuracy, risk warning
timeliness, and outcomes; (2) automatically identify actionable
temporal risk factors for each patient at high risk for future
hospital use and assess the impact on prediction accuracy and
outcomes; (3) assess actionable information’s impact on
clinicians’ acceptance of early warnings and on perceived care
plan quality. Here, actionable information refers to the
explanations and their linked interventions provided by our
automated approach.

Innovation
This study will lead to several innovations. We will develop
new, general informatics techniques. We will transform care
management for COPD and asthma by directing it to the patients
needing it in a more timely fashion and more precisely than
current methods:

1. We will build models to predict a patient’s hospital use
earlier and more accurately than current models, which
often give late warnings and have low accuracy.

2. We will be the first to semiautomatically extract predictive
and clinically meaningful temporal features from
longitudinal medical data. This process helps us address
data quality issues and automatically find and drop
uninformative variables. All of these boost model accuracy
and generalizability and reduce the effort needed to build
models usable in clinical practice. Currently, to build such
models, clinicians typically need to manually identify such
features, which is difficult and time consuming.

3. We will be the first to provide rule-based automatic
explanations of machine learning prediction results directly
on longitudinal data. Explanations are critical for care
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managers to understand the results to make appropriate care
management enrollment and intervention decisions.
Compared with other forms of automatic explanations such
as that used in Rajkomar et al [36], rule-based explanations
are easier to understand and can more directly suggest
actionable interventions. Most automatic explanation
methods [60], including our previous one [59], for machine
learning prediction results cannot handle longitudinal
attributes. Also, our previous method [59] gives
explanations for a limited portion of patients. We will
improve our previous method, handle longitudinal attributes,
and expand automatic explanations’ coverage of patients.

4. We will be the first to automatically identify actionable
temporal risk factors and suggest interventions based on
inclusion of objective data. Currently, care managers use
subjective, variable judgment to manually form care plans.
Some suited interventions for patients at high risk for a poor
outcome get missed. Also, care managers provide a finite
input on the patient to the other clinical care team members.
With automatic explanations and suggested interventions
in hand, care managers can pass this tailored information
to the other clinical care team members so they can act
accordingly. This could transform the care management
process and make it more effective via closer collaboration
between care managers and the other clinical care team
members.

5. Current models for predicting the health outcomes of
individual COPD and asthma patients were built mostly
using a small number of patients (eg, <1000) or variables
(eg, <10) [19-28], making it difficult to identify many
predictive features and the interactions among them. Air
quality and weather variables impact COPD and asthma
outcomes [43,50-52] but are rarely used in existing models.
The predictive power of many known risk factors for
undesirable outcomes is unused. Also, many predictive
features have not yet been found. In contrast, we will use
many patients and variables, enabling us to identify more
predictive features and the interactions among them. The
variables will include air quality, weather, and patient
variables, cover many known risk factors for undesirable
outcomes, and be used to find new predictive features in a
data-driven way. Many features are new, capturing trends
that existing models rarely touch.

To build and validate models for predicting the health outcomes
of individual COPD and asthma patients, we will use data from
4 different electronic health record systems HELP, HELP2,
Cerner, and Epic. This boosts model generalizability. In contrast,
every existing model for predicting the health outcomes of
individual COPD and asthma patients was built using data from
only 1 electronic health record system [19-28].

In short, this study is significant as it will produce new
techniques to advance machine learning for clinical applications
and potentially transform preventive care for more patients to
receive appropriate and timely care. The wide use of these
techniques could boost outcomes and save resources.

Methods

Computing Environment
All experiments will be done on a secure computer cluster at
the University of Washington Medicine (UWM) that is
encrypted and password protected. With proper authorization,
all of the UWM care manager and physician test participants
and research team members can log into this computer cluster
from their UWM computers. We will install Oracle database,
R, Weka [61], and TensorFlow [62] to be used in the study on
the computer cluster. Weka is a major open-source machine
learning toolkit. It incorporates many popular machine learning
algorithms including both base and ensemble algorithms, feature
selection techniques, and methods for dealing with imbalanced
classes [63]. TensorFlow is Google’s open-source deep neural
network package.

Datasets
We will employ clinical and administrative data from the
enterprise data warehouses (EDWs) of 3 leading health care
systems: Intermountain Healthcare (IH), Kaiser Permanente
Southern California (KPSC), and UWM, as well as publicly
available air quality and weather data. All of the data to be used
are structured. We will use all patients’ data that are needed for
computing health care system features [64,65], rather than only
COPD and asthma patients’ data. As the largest health care
system in Utah, IH has 185 clinics and 22 hospitals. The EDW
of IH contains numerous variables [66]. In this study, we will
start with using the following of these variables: “admission
date and time; age; orders (medications, labs, exams,
immunizations, imaging, and counseling), including order name,
ordering provider, performing date, and result date; allergies;
barriers (hearing, language, learning disability, mental status,
religion, and vision); cause of death; chief complaint; death
date; diagnoses; discharge date; exam result; facility seen for
the patient visit; gender; health insurance; healthcare cost;
height; home address; immunizations; lab test result; languages
spoken; medication refills; primary care physician as listed in
the electronic medical record; problem list; procedure date;
procedures; provider involved in the visit; race/ethnicity;
referrals; religion; visit type (inpatient, outpatient, urgent care,
or emergency department); vital signs; weight” [65]. An IH data
analyst will download a de-identified IH dataset, encrypt it, and
transfer it to the secure computer cluster. The IH dataset has
information on clinical encounters in the previous 14 years
(2005 to 2018). For the previous 5 years, the IH data for adults
cover over 5,786,414 clinical encounters and 878,448 adult
patients (aged ≥18 years) per year. The IH data for children
cover over 1,557,713 clinical encounters and 360,698 pediatric
patients (aged <18 years) per year. COPD prevalence is
approximately 4.1% in the IH adult population. Asthma
prevalence is approximately 8.6% and 7.6% in the IH adult and
pediatric population, respectively. The IH dataset provides the
electronic record of care for approximately 60% of adults and
approximately 95% of children in Utah [56,67]. IH devotes
many resources to maintain data integrity and accuracy. Owing
to its huge size and variable richness, the dataset provides many
advantages for us to explore the proposed predictive models.
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KPSC and UWM have similar strengths. KPSC is the largest
integrated health care system in Southern California, providing
care to approximately 16% of residents in 227 clinics and 15
hospitals [68]. A KPSC data analyst will download a
de-identified KPSC dataset, encrypt it, and transfer it to the
secure computer cluster. The KPSC dataset has information on
clinical encounters in the previous 10 years (2009 to 2018). For
the previous 5 years, the KPSC data for adults cover over
9,448,987 clinical encounters and 2,890,027 adult patients per
year. The KPSC data for children cover more than 1,380,900
clinical encounters and 975,249 pediatric patients per year.
COPD prevalence is approximately 4.1% in the KPSC adult
population. Asthma prevalence is approximately 10.8% and
10.9% in the KPSC adult and pediatric population, respectively.

As the largest academic health care system in Washington,
UWM has 12 clinics and 4 hospitals. A UWM data analyst will
download a de-identified UWM dataset, encrypt it, and transfer
it to the secure computer cluster. The UWM dataset has
information on adult patient encounters in the previous 7 years
(2012 to 2018). The UWM data cover over 1,714,196 clinical
encounters and 277,289 adult patients per year. COPD
prevalence among patients is approximately 4.1%. Asthma
prevalence is approximately 9%.

In addition to the clinical and administrative data, we will use
11 air quality and weather variables, which were recorded over
the previous 14 years (2005 to 2018) by the monitoring stations
in the regions served by UWM, IH, and KPSC and are available
from federal data sources [69,70]. These variables include ozone,
sulfur dioxide, particulate matter up to 10 μm in size, particulate
matter up to 2.5 μm in size, nitrogen dioxide, temperature,
carbon monoxide, wind speed, relative humidity, precipitation,
and dew point.

In the following, we sketch our techniques. Our design paper
[71] describes the ideas in more detail. In this study, for each
technique, we will flesh out its technical details, do computer
coding, tune its parameters, and test it. The discussion below
focuses on COPD. Whenever we mention COPD, the same
applies to asthma.

Aim 1: Use Temporal Features to Provide Accurate
Early Warnings of Poor Outcomes and Assess the
Impact on Prediction Accuracy.
We will semiautomatically extract predictive and clinically
meaningful temporal features from patient, air quality, and
weather data, and build models to predict a patient’s health
outcome. Each feature involves one or more raw variables. The
number of possible features is almost infinite. In addition, factors
such as environmental variables beyond air quality and weather
can influence patient outcomes. This study does not intend to
exhaust all of the possible features and factors that can influence
patient outcomes and achieve the highest possible prediction
accuracy in theory. Rather, our purpose is to show that using
temporal features can improve risk warning timeliness,
prediction accuracy, and care management. A nontrivial boost
in health outcomes can greatly benefit society. As is adequate
for our target decision support application and typical with
predictive modeling, our study focuses on associations.

Data Preprocessing
We will write Oracle database SQL queries and R and Java
programs for data preprocessing. Our source code will be made
freely available on a project website hosted by UWM. In our
future publications on this study’s results, we will describe all
of the decisions made for data preprocessing, such as the
thresholds used for determining the physiologically impossible
and invalid values of an attribute. We will transform all of the
datasets into the Observational Medical Outcomes Partnership
(OMOP) common data model format [72] and its related
standardized terminologies [73]. We will extend the data model
to include patient, air quality, and weather variables that are in
our datasets but not covered by the original data model. We will
adopt conventional techniques such as imputation to manage
missing values and to find, rectify, or drop invalid values
[74,75]. To avoid using too many longitudinal attributes, we
will employ grouper models such as the Diagnostic Cost Group
system to merge diseases, drugs, and procedures [31,34]. We
will use the method given in our paper [71] to select the most
relevant laboratory tests.

We will use patient, air quality, and weather variables. The
patient variables include standard variables such as diagnoses
that the clinical predictive modeling literature [34,55,74] has
studied and many known risk factors for undesirable COPD
outcomes listed in Bahadori et al [45]. For air quality and
weather variables, we will do spatial interpolation [76] to obtain
their daily average values at the patient’s home address from
those at regional monitoring stations [77].

Chronic Obstructive Pulmonary Disease and Asthma
Cases and Outcomes
As test cases, we will develop and test our approach using (1)
COPD, (2) pediatric asthma, and (3) adult asthma. For COPD,
we will adjust the criteria used by the Centers for Medicare and
Medicaid Services and National Quality Forum [78-80] to
incorporate outpatient and emergency room visit data [81] to
find COPD patients. A patient is deemed to have COPD if he/she
is ≥40 years and has one of the following:

1. 1 outpatient visit diagnosis code of COPD (International
Classification of Diseases, Ninth Revision [ICD-9]: 491.21,
491.22, 491.8, 491.9, 492.8, 493.20, 493.21, 493.22, 496;
International Classification of Diseases, Tenth Revision
[ICD-10]: J41.8, J42, J43.*, J44.*) and ≥1 prescription of
tiotropium within 6 months of the outpatient visit.

2. ≥2 outpatient or ≥1 emergency room visit diagnosis codes
of COPD (ICD-9: 491.21, 491.22, 491.8, 491.9, 492.8,
493.20, 493.21, 493.22, 496; ICD-10: J41.8, J42, J43.*,
J44.*).

3. ≥1 hospital primary discharge diagnosis code of COPD
(ICD-9: 491.21, 491.22, 491.8, 491.9, 492.8, 493.20,
493.21, 493.22, 496; ICD-10: J41.8, J42, J43.*, J44.*).

4. ≥1 hospitalization with a primary discharge diagnosis code
of respiratory failure (ICD-9: 518.81, 518.82, 518.84, 799.1;
ICD-10: J80, J96.0*, J96.2*, J96.9*, R09.2) and a secondary
discharge diagnosis code of acute exacerbation of COPD
(ICD-9: 491.21, 491.22, 493.21, 493.22; ICD-10: J44.0,
J44.1).
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The outcome measure is whether a patient used the hospital
(inpatient stay and emergency room visit) with a primary
diagnosis of COPD (ICD-9: 491.21, 491.22, 491.8, 491.9, 492.8,
493.20, 493.21, 493.22, 496; ICD-10: J41.8, J42, J43.*, J44.*)
in the subsequent year.

For asthma, we will use Schatz et al’s [20,82,83] method to find
asthma patients. A patient is deemed to “have asthma if he/she
has 1) ≥1 diagnosis code of asthma (ICD-9 493.*; ICD-10
J45/J46.*) or 2) ≥2 asthma-related medication dispensing records
(excluding oral steroids) in a one-year period, including
β-agonists (excluding oral terbutaline), inhaled steroids, other
inhaled anti-inflammatory drugs, and oral leukotriene
modifiers.” [84] The outcome measure is whether a patient used
the hospital with a primary diagnosis of asthma (ICD-9 493.*;
ICD-10 J45/J46.*) in the subsequent year.

Temporal Feature Extraction
We will use a new method to semiautomatically extract
predictive and clinically meaningful temporal features from
longitudinal data. These features will be used to build the final
predictive model and to automatically identify actionable
temporal risk factors for each patient at high risk for future
hospital use. Our new method is semiautomatic, as its final step
involves a human to extract features through visualization [71].
It generalizes to many clinical applications and is sketched as
follows, with more details described in our design paper [71].

Our method uses LSTM [35], a type of deep neural network
that models long-range dependencies and often reaches higher
prediction accuracy than other algorithms [40]. A lot of work
has been performed using LSTM to construct predictive models
on medical data [36-39,85]. LSTM performs computations on
a sequence of input vectors from the same patient, one vector
after another. Every input vector is marked by a time step t.
After finishing the whole sequence, LSTM gains results that
are combined with static attributes such as gender [86] to predict
the outcome of the patient. Every input vector contains
information of one patient visit such as vital signs and diagnoses.
The sequence length can differ across patients. This helps
increase model accuracy, because LSTM can use as much of
each patient’s information as possible, without dropping
information to make every patient have the same length of
history. In addition, this enables us to make timely predictions
on new patients without waiting until every patient acquires
history of a certain length. With information from only one visit,
LSTM can start making projections on the patient.

As Figure 1 shows, an LSTM network includes a sequence of
units, one for each time step. In the figure, each unit is denoted
by a rounded rectangle.   represents the element-wise
multiplication.   represents the element-wise sum. A unit
contains an input gate it, a hidden state ht, an output gate ot, a
forget gate ft, and a memory cell ct. The memory cell maintains
long-term memory and keeps summary information from all of
the previous inputs. Every element of the memory cell vector
represents some learned temporal feature. As shown by Karpathy

et al [87], only approximately 10% of the memory cell vector
elements could be interpreted [88]. This is because LSTM puts
no limit on the number of input vector elements that can connect
to every memory cell vector element. All of the input vector
elements could be adopted in every element of the input and
forget gates’ activation vectors and connect to every memory
cell vector element. Consequently, no limit is put on the number
of attributes utilized in every learned temporal feature.

It is difficult to understand a feature that involves many
attributes. To address this issue, we will use multi-component
LSTM (MCLSTM), a new type of LSTM that can automatically
drop uninformative attributes. As Figure 2 shows, an MCLSTM
has several component LSTM networks, each using some rather
than all of the longitudinal attributes. By limiting the number
of attributes connecting to every memory cell vector element,
more memory cell vector elements will depict clinically
meaningful and more generalizable temporal features. As LSTM
often produces more accurate models than other algorithms
[36-39], the learned features tend to be predictive. As patient
attributes are collected at a different frequency from air quality
and weather attributes, we specify certain component networks
for the former and the others for the latter. To let data tell which
component network uses which attributes, we use a new
exclusive group Lasso (least absolute shrinkage and selection
operator) regularization method. It combines exclusive Lasso
[89,90] and group Lasso [91] to reach 2 goals jointly. First, in
each component network, every attribute competes with every
other attribute. When one is employed, the others are less likely
to be employed. Second, in each component network, all of the
input vector weight matrix elements connecting to the same
attribute tend to become nonzero (or zero) concurrently. Nonzero
means the attribute is employed. We will use TensorFlow [62]
to train MCLSTM and use our previous method [84,92] to
automate hyperparameter value selection.

Kale et al [93-97] showed that in a deep neural network, we can
use training instances that incur the highest activations of a
neuron to find clinically meaningful features. After training the
MCLSTM network, we proceed as follows to identify zero or
more such features from every memory cell vector element at
the final time step of the network. First, we find several training
instances that incur the highest activations in the memory cell
vector element. Second, in each of those training instances, we
find one or more segments of the input vector sequence termed
effective segments, each tending to represent a useful temporal
feature. Third, we partition all spotted effective segments into
multiple clusters and visualize each cluster separately to identify
zero or more clinically meaningful temporal features. As shown
in Wang et al [98], such a visualization could help us find and
address data quality issues such as an implausible order of
events, boosting model accuracy. For each identified feature,
Dr Luo and a clinician in our team will jointly arrive at an exact
mathematical definition of an extracted feature. Many extracted
features capture trends more precisely than the raw features
learned by LSTM. This also boosts model accuracy.
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Figure 1. A long short-term memory network.

Figure 2. A multi-component long short-term memory network having K components.

Aim 1’s Final Predictive Models
We will use the extracted temporal features to convert
longitudinal data to tabular data, with 1 column per feature, and
add static features. Health care system features such as the
number of a physician’s patients of a given race can boost model
accuracy [64,65,99] and are included as static features. We will
employ Weka [61] to construct Aim 1’s final predictive models.
As shown in Aim 4, these models are suitable for automatic
explanation. We will use supervised algorithms and our previous
method [84,92] to automatically select the algorithm, feature
selection technique, imbalanced class handling method, and
hyper-parameter values among all of the applicable ones. We
will do manual fine-tuning if needed.

Using historical data up to the prediction time point, we will
build 3 sets of models, one for each of 3 combinations: COPD
at IH, KPSC, and UWM. For each of IH, KPSC, and UWM,
the corresponding set of COPD models will be built for all of
the COPD patients in that health care system. Unlike integrated
health care systems IH and KPSC, UWM has most of its patients
referred from other health care systems and has fairly incomplete
data on many of its patients. To reduce incomplete data’s impact
on model accuracy, we will use our previous constraint-based

method [100] to find patients tending to receive most of their
care at UWM and build models on and apply models to them.
Previously, we showed that a good constraint for all types of
UWM patients on average is that the patient lives within 5 miles
of a UWM hospital and has a UWM primary care physician
[100]. Yet, the optimal distance threshold could vary across
various types of patients because of their different
characteristics. Intuitively, a UWM COPD patient is likely to
keep using and get a large portion of his/her care from UWM,
even if the patient lives at some distance away from the closest
UWM hospital. In comparison, a patient who visited a UWM
emergency room once owing to a car accident may no longer
use UWM after that visit. We will use the approach in our
previous work [100] to find an optimal distance threshold for
COPD patients. As noted earlier, we will develop and test our
techniques on asthma as well.

Accuracy Evaluation and Justification of the Sample
Size
The discussion below is for IH data. The cases with KPSC and
UWM data are similar. As we need to compute outcomes for
the subsequent year, we essentially possess 13 years of IH data
over the past 14 years. We will train and test models in a usual
way. We will do a stratified 10-fold cross-validation [61] on
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the data in the first 12 years to train models and to estimate their
accuracy. The data in the 13th year will be employed to gauge
the performance of the best models, mirroring future use in
clinical practice. We will select the best model using the
standard performance metric AUC [61]. A care management
program typically enrolls 1% to 3% of COPD patients [32]. Of
the upper 1% of COPD patients the model projects to be at the
highest risk of using the hospital, we will report the percentage
of patients using the hospital in the subsequent year. For a
program taking 1% of COPD patients based on the model’s
prediction results, this percentage reflects the degree of correct
enrollment. To find the variables vital for high accuracy, we
will conduct backward elimination [74] to remove features on
the condition that accuracy does not drop >0.02. We will
compare the variables vital for high accuracy on IH data with
those on KPSC and UWM data. Using the variables available
in both the IH and KPSC/UWM datasets, we will build the best
predictive model on IH data and compare the model’s accuracy
on IH data with that on KPSC/UWM data.

We will test the hypothesis that using our techniques can boost
model accuracy. To do this, we will use a 2-sided Z test to
compare the AUCs of 2 predictive models built in a way like
that in Obuchowski [101]. The first predictive model will use
the best machine learning algorithm and take all features
essential for high accuracy. The second model will be adapted
from those in the literature. For each predictive model for
hospital usage reported in the literature [19-28], we will retrain
it on our dataset using the attributes appearing in both the
original model and our dataset. The most accurate one of the
retrained models will be the second model. Our hypothesis is
as follows:

1. Null hypothesis: The first model reaches the same AUC as
the second.

2. Alternative hypothesis: The first model reaches a higher
AUC than the second.

The categorical outcome variable of hospital usage has 2
possible values (classes). To the best of our knowledge, every
predictive model for hospital usage reported in the literature
reaches an AUC <0.8 [19-28]. “Using a two-sided Z-test at a
significance level of 0.05 and assuming for both classes a
correlation coefficient of 0.6 between the two models’prediction
results, a sample size of 137 instances per class has 90% power
to detect a difference of 0.1 in AUC between the two models,”
[65] like an increase of AUC from 0.8 to 0.9. The IH data in
the 13th year include around 35,000 COPD patients, offering
enough power to test our hypothesis. This conclusion remains
valid if the actual correlation coefficient differs somewhat from
the assumed one.

Aim 2: Assess Using Temporal Features’ Impact on
Risk Warning Timeliness
The discussion below is for IH data. The cases with KPSC and
UWM data and with asthma are similar.

Outcome of the Number of Days of Early Warning the
Model Provides for the Patient and the Estimation
Approach
Consider a predictive model and a patient who used the hospital
on date D in the 14th year. The outcome is the number of days
of early warning the model provides for the patient. To measure
the number, we find the first date D' (D-365≤ D' ≤ D-1) such
that if we use D' as the prediction time point and input the
patient’s history up to D' into the model, the model predicts
hospital use in the subsequent year. In this case, the model warns
the first hospital use k (0≤ k ≤ D-D') days in advance, with D'
+ k being the first day between D' and D when the patient used
the hospital. k is the outcome number. Otherwise, if the model
still predicts no hospital use when we reach D-1, the model
warns zero day in advance and zero is the outcome number. We
expect using our techniques will raise the outcome number. We
will assess the outcome on the cohort of COPD patients who
ever used the hospital during the 14th year. For these patients,
the average number of days of early warning given by the model
shows how timely it warns.

Outcome Evaluation and Justification of the Sample
Size
We will test the hypothesis that using our techniques can boost
risk warning timeliness. To do this, for the patient cohort, we
will use an F test to compare the number of days of early
warnings provided by the 2 models mentioned in Aim 1’s
accuracy evaluation section, assuming a Poisson model with an
offset of 365 days. Our hypothesis is as follows:

1. Null hypothesis: The number of days of early warning
provided by the first model is the same as that provided by
the second.

2. Alternative hypothesis: The number of days of early
warning provided by the first model is larger than that
provided by the second.

Assuming the number of days of early warning has an
exponential distribution and employing an F test at a one-sided
significance level of 0.05, a sample size of 600 patients offers
80% power to detect a minimum raise of 27.8 days of early
warning by the first model, when the second model warns, on
average, 180 days in advance. About 2000 COPD patients ever
used IH hospitals during the 14th year, giving enough power
to test our hypothesis. The conclusion remains valid if the actual
situation differs somewhat from the assumed one.

For Aims 1 and 2, our goal is to reach a boost of ≥0.1 in
accuracy and ≥30 days in risk warning timeliness, respectively.
If we cannot reach this goal on the entire COPD patient group,
we will construct distinct models for differing patient subgroups.
The patient subgroups are described by characteristics such as
age or co-morbidity, which are often independent variables in
the original predictive models. If we still cannot reach this goal,
we will do subanalyses to find the patient subgroups, for which
our predictive models show good performance, and then apply
our ultimate predictive models only to these patient subgroups.
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Aim 3: Assess Using Temporal Features’ Potential
Impact on Outcomes Via Simulations
To assess the value of a predictive model for future clinical
deployment, we need to appraise care management outcomes
if the model is adopted and decide how to generalize the
predictive model to other sites gathering differing sets of
variables. Our predictive models will be constructed on IH,
KPSC, and UWM data. Our simulations will guide how to
employ the predictive models in other health care systems. No
previous study has decided the variables most crucial for COPD
and asthma model generalization. We will apply our simulation
method to care management of (1) COPD patients, (2) asthmatic
children, and (3) asthmatic adults.

Outcomes of the Number of Inpatient Stays and the
Number of Emergency Room Visits in the Subsequent
Year and the Estimation Approach
The number of inpatient stays in the subsequent year is the
primary outcome. The number of emergency room visits in the
subsequent year is the secondary outcome. The following
discussion focuses on IH data and inpatient stays. The cases
with KPSC and UWM data and/or emergency room visits can
be handled similarly. From statistics reported in the literature
[102,103], we will obtain the percentage of inpatient stays, p,
a care management program can help avoid. Given a set of
variables, we will adopt the same method used in Aim 1 to train
a predictive model on the data in the first 12 years. For the data
in the 13th year, we will gather prediction results, then estimate
the outcome. Consider a patient who will have ne inpatient stays
in the subsequent year without enrolling in the program. If the
patient gets enrolled, for each inpatient stay of the patient, we
will simulate whether it will occur or not based on probability
1-p. The gross outcome estimate will be the sum of the estimated
outcomes of all patients. Adopting a similar method, we will
find the minimum accuracy required for the predictive model
to be valuable in clinical practice.

Sensitivity Analysis
IH, KPSC, and UWM collect many variables. Another health
care system may collect fewer. To ensure generalizability, we
will evaluate various variable combinations and obtain the
estimated outcomes when the revised model is adopted. These
estimates will pinpoint crucial variables. If a crucial variable is
not available in a given health care system, these estimates can
hint alternative variables having minimal adverse impact on the
outcomes.

We will employ a variable grouping approach relating variables
likely to co-exist, such as those linked in a laboratory test panel,
according to the judgment of our clinical experts. We will create
and post a table showing many possible combinations of
variables by groups, encompassing the trained parameters and
the simulated outcomes of the predictive model. A health care
system wanting to deploy the model can employ this table to
estimate the expected outcomes in the system’s data
environment, as well as to determine the variables to be
gathered. The table has 3 columns, one for each of IH, KPSC,
and UWM. Many variables collected by IH, KPSC, and UWM
and used in this study are commonly available in many other

systems. Thus, all variables used in each of many rows in the
table will already exist in these systems.

Outcome Evaluation and Justification of the Sample
Size
The following discussion focuses on IH data. The cases with
KPSC and UWM data are similar. We will employ McNemar
test to compare the paired-sample outcomes reached by the 2
predictive models mentioned in Aim 1’s accuracy evaluation
section. We will test 2 hypotheses: using our techniques will
link to a potential drop in (1) inpatient stays and (2) emergency
room visits in the subsequent year. Our primary hypothesis is
as follows:

1. Null hypothesis: The number of inpatient stays in the
subsequent year reached by the first model is the same as
that reached by the second.

2. Alternative hypothesis: The number of inpatient stays in
the subsequent year reached by the first model is smaller
than that reached by the second.

Among the patients truly at high risk for future hospital use, the
first model will find some missed by the second and vice versa.
Assuming the former cuts inpatient stays in the subsequent year
by 5% and the latter increases them by 1%, at a one-sided
significance level of 0.05, a sample size of 251 instances
provides 80% power to verify the primary hypothesis. The IH
data in the 13th year cover about 35,000 COPD patients, offering
enough power to test the primary hypothesis.

Aim 4: Automatically Identify Actionable Temporal
Risk Factors for Each Patient at High Risk for Future
Hospital Use and Assess the Impact on Prediction
Accuracy and Outcomes
Care managers currently give finite input on the patient to the
other clinical care team members. Owing to bandwidth
constraints, care managers can afford to examine only a finite
number of patients top ranked by the predictive model—those
whose projected risk for future hospital use is over a given
threshold like the 95th percentile. For those patients, we will
automatically explain early warnings, identify actionable
temporal risk factors, and suggest tailored interventions. This
helps care managers make enrollment decisions and form
tailored care plans. This also enables care managers to pass
actionable information on to the other members in the clinical
care teams and collaborate more closely with them. To
implement the new function, we will improve our previous
method [59] to automatically explain a machine learning
model’s prediction results without incurring any accuracy loss.
For nonlongitudinal tabular data, our previous method separates
explanation and prediction by employing 2 models
simultaneously, each for a distinct purpose. The first model
gives predictions to maximize accuracy. The second employs
class-based association rules mined from historical data to
explain the first model’s results. Our previous method cannot
handle longitudinal attributes and has not yet been applied to
COPD, asthma, or care management.

As mentioned in Aim 1, we will use temporal features to convert
longitudinal data to tabular data, with 1 column per feature.
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Then we can apply our previous automatic explanation method
[59]. Each patient is represented by the same set of features and
is marked as either high risk for future hospital use or not. From
historical data, our method mines association rules linked to
high risk. An example rule is as follows: the ratio of inhaled
steroid to beta agonist dispensing to the patient decreased over
12 months AND sulfur dioxide level was ≥3 parts per million
for ≥5 days in the past week   high risk. The first item on the
left-hand side of the rule is an actionable temporal risk factor.
Two interventions for the first item are to (1) assess COPD
controller medication compliance and change, prescribe, or raise
the dose of the medication if needed and (2) assess the patient
for COPD triggers and ensure the patient stays away from them.
Our paper [71] listed several interventions for a few other
temporal risk factors. By discussion and consensus, the clinical
experts in our team will check the mined rules and drop those
making little or no sense clinically. For every rule that remains,
our clinical team will mark the actionable temporal risk factors
in it and list zero or more interventions that address the reason
shown by the rule.

At the time of prediction, for every patient our most accurate
model projects to be at high risk for future hospital use, we will
find and show all of the association rules whose left-hand side
conditions the patient satisfies, and list the interventions linking
to these rules as our suggestions. Each rule shows a reason why
high risk is anticipated for the patient. Users of our automatic
explanation function can give feedback to help us find and drop
unreasonable rules [64].

Boost Automatic Explanations’ Coverage of Patients,
Model Accuracy, and Generalizability
For a nontrivial portion of patients, our previous automatic
explanation method [59] cannot explain the prediction results
of the model. Our previous method employs a conventional
approach to mine association rules at a specific level of 2
parameters: minimum confidence and support. This approach
is suboptimal for imbalanced data. There, the outcome variable
takes the high-risk value for future hospital use much more
often than the low-risk one. Adopting the same minimum
support for both values is inadequate [104]. If the minimum
support is too small, the rule mining process will form many
overfitted rules, making it daunting for clinicians to check all
of the mined rules. If the minimum support is large, we cannot
identify enough rules for the high-risk value. Consequently, for
many patients projected to be at high risk for future hospital
use, we cannot explain the prediction results of the model.

To enlarge automatic explanations’ coverage of patients, we
will use a new technique. It generalizes to many clinical
applications and is sketched as follows, with more details given
in our design paper [71]. We will use Paul et al’s [104] approach
to mine association rules, by replacing support by value-specific
support termed commonality. This has 2 advantages. First, the
rule-mining process produces fewer overfitted rules, cutting the
time clinicians need to check the mined rules. Second, we obtain
more rules for the high-risk value of the outcome variable. Thus,
for more patients projected to be at high risk for future hospital
use, we can explain the prediction results of the model.

Using automatic explanations and the method described in our
paper [64], we will find and drop uninformative features and
retrain the predictive model. For the model, this can boost its
accuracy, as well as make it generalize better to other health
care systems beyond where it was originally built. On
nonmedical data, Ribeiro et al [105] showed a similar method
with a narrower scope boosted model accuracy by approximately
10%.

Performance Evaluation
We will compare the association rules obtained from IH, KPSC,
and UWM data. The following discussion focuses on IH data.
The cases with KPSC and UWM data are similar. We will do
analyses similar to those in Aim 1 to compare using our new
techniques in Aim 4 versus the current method of offering no
explanation. We will compare the outcomes of the number of
inpatient stays and the number of emergency room visits in the
subsequent year and the accuracy reached by the 2 models: the
best ones produced in Aims 1 and 4. We will test 3 hypotheses:
using our new techniques in Aim 4 will link to a potential drop
in (1) inpatient stays and (2) emergency room visits in the
subsequent year and (3) boost prediction accuracy. Our primary
hypothesis is as follows:

1. Null hypothesis: The number of inpatient stays in the
subsequent year reached by the second model is the same
as that reached by the first.

2. Alternative hypothesis: The number of inpatient stays in
the subsequent year reached by the second model is smaller
than that reached by the first.

We will employ McNemar test to compare the paired-sample
outcomes reached by the 2 models.

Among the patients truly at high risk for future hospital use, the
second model will find some cases missed by the first and vice
versa. Assuming the former cuts inpatient stays in the
subsequent year by 2.5% and the latter increases them by 0.5%
and using McNemar test, at a one-sided significance level of
0.05, a sample size of 503 instances provides 80% power to
verify the primary hypothesis. The IH data in the 13th year
cover approximately 35,000 COPD patients, offering enough
power to test the primary hypothesis.

To assess our technique’s impact on model generalizability, we
will compare 2 predictive models’ accuracy on KPSC/UWM
data. The first model is the best one produced in Aim 1 on IH
data using the variables available in both the IH and
KPSC/UWM datasets. The second is produced by using our
technique to drop uninformative features from the first model
and retrain it on IH data. We will develop and test our techniques
on asthma as well.

Aim 5: Assess Actionable Information’s Impact on
Clinicians’ Acceptance of Early Warnings and on
Perceived Care Plan Quality
As an essential preparatory step for future clinical deployment,
we will evaluate actionable information’s impact on UWM care
managers and physicians’ decision making in a test setting. For
physicians, we will use primary care physicians, pulmonologists,
and allergists managing COPD patients. The discussion below
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focuses on care managers. The case of evaluating with 10
physicians is similar.

Subject Recruitment
As an operational project at UWM, we are working on COPD
outcome prediction and can access approximately 25 UWM
care managers for adults. By making announcements in their
email lists and personal contact, we will recruit 10 care
managers. We will adopt purposeful sampling to ensure adequate
variability in work experience [106]. All evaluation test
participants will give consent and be up-to-date on privacy and
information security policy training required by UWM.
Participants will obtain pseudonyms, connecting their responses
to questions to protect privacy. After completing the task, each
will obtain US $2400 as compensation for participation for
approximately 40 hours of work. We will conduct 2 experiments.

Experiment 1

Procedures
From the IH data in the 13th year, we will randomly select 400
IH COPD patients who used the hospital in the subsequent year
and automatically explain the prediction results of the best IH
model built in Aim 4. We will use patients outside of UWM to
help ensure no care manager is aware of any of those patients’
outcome in the subsequent year. We will show every care
manager a different subset of 40 patients and proceed in 3 steps:

• Step 1: For every patient, we will present the historical
de-identified patient attributes and the prediction result to
the care manager and ask him/her to record the enrollment
decision and interventions, if any, that he/she plans to use
on the patient. For the historical patient attributes, we will
show the static attributes’ values at the top, followed by the
longitudinal attributes’ values in reverse chronological
order. No care manager will see any automatic explanation
in this step.

• Step 2: For every patient, we will present the automatic
explanations and their linked interventions to the care
manager and survey him/her using both semistructured and
open-ended questions. The automatic explanations will
appear as a list of association rules. Below each rule is the
list of interventions linked to the rule. The questions will
include whether these explanations would change the
enrollment decision for the patient, whether he/she believes
they would improve care plan quality, their usefulness on
a 1 to 7 scale with anchors of not at all/very useful, and
their perceived trustworthiness on a 1 to 7 scale with
anchors of not at all/completely. Our questionnaire will
embrace a text field for writing comments.

• Step 3: We will use the standard Technology Acceptance
Model (TAM) satisfaction questionnaire [107] to survey
the care manager about the automatic explanations. A
technology is unimportant unless people will accept and
use it. Developed based on multiple well-accepted
behavioral theories, TAM is the most widely adopted model
of people’s acceptance and usage of a technology. The
TAM satisfaction questionnaire will measure the perceived
usefulness and the perceived ease of use of automatic
explanations. Perceived usefulness is known to link strongly

to future usage intentions and to actual function usage
[108,109]. Multiple studies have demonstrated the validity
and reliability of the TAM satisfaction questionnaire
[110,111].

Analysis
We will adopt the inductive approach described in Patton et al
[106,112] to conduct qualitative analysis. Care managers’ textual
comments will be put into ATLAS.ti qualitative analysis
software [113]. In total, 3 people in our research team will
independently highlight quotations on prediction results and
automatic explanations for all records. Quotations will be
examined, classified into precodes, and merged into categories
via discussion and negotiated consensus in several iterations.
We will find general themes via synthesis of categories. The
quantitative analyses will include giving descriptive statistics
for every quantitative outcome measure. We will test the
hypothesis that for the patients who will use the hospital in the
next year, giving actionable information will improve the
perceived care plan quality. Our hypothesis is as follows:

1. Null hypothesis: For the patients who will use the hospital
in the next year, the care manager does not believe that
showing the automatic explanations and their linked
interventions would improve care plan quality.

2. Alternative hypothesis: For the patients who will use the
hospital in the next year, the care manager believes that
showing the automatic explanations and their linked
interventions would improve care plan quality

We will fit a random effect logistic model to account for
correlation among the outcomes of the same care manager on
whether the perceived care plan quality is improved.

Justification of the Sample Size
Assuming a moderate intra-class correlation of 0.1 within the
same care manager on the outcome of whether the perceived
care plan quality is improved, a sample size of 40 instances per
care manager for 10 care managers is equivalent to totally 82
independent instances after adjusting for the clustering effect.
At a 2-sided significance level of 0.05, we will have 80% power
to identify a 9.7% increase in the odds of improving the
perceived care plan quality with actionable information. A
similar conclusion holds if the actual correlation differs
somewhat from the assumed one.

If giving actionable information has no significant impact on
the perceived care plan quality on the whole group of COPD
patients, we will do subanalyses to find those patient subgroups
on which significant impact occurs.

Experiment 2

Procedures
We will randomly partition the 10 care managers into 2 disjoint
groups: the intervention group and the control group. Each group
has 5 care managers. From the IH data in the 13th year, we will
randomly select 200 IH COPD patients who used the hospital
in the subsequent year and whose data are unused in Experiment
1 and automatically explain the prediction results of the best
IH model built in Aim 4. For each group, we will show every
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care manager in the group a different subset of 40 patients. With
random assignment, each patient is shown to 2 care managers,
one in the intervention group and the other in the control group.
In the control group, for every patient, we will show the care
manager the historical de-identified patient attributes and the
prediction result but no automatic explanation. In the
intervention group, for every patient, we will show the care
manager the historical de-identified patient attributes, the
prediction result, the automatic explanations, and their linked
interventions. In both groups, we will ask the care managers to
record their enrollment decisions.

Analysis
We will test the hypothesis that for a patient who will use the
hospital in the next year, giving actionable information will
increase the likelihood that a care manager decides to enroll the
patient in care management. Our hypothesis is as follows:

1. Null hypothesis: For a patient who will use the hospital in
the next year, the likelihood that a care manager in the
intervention group decides to enroll the patient in care
management is the same as that in the control group.

2. Alternative hypothesis: For a patient who will use the
hospital in the next year, the likelihood that a care manager
in the intervention group decides to enroll the patient in
care management is higher than that in the control group.

We will fit a random effect logistic model to compare care
managers’ enrollment decision outcomes between the
intervention group and the control group, while accounting for
correlation among the enrollment decision outcomes of the same
care manager and correlation between the enrollment decision
outcomes of the same patient examined by 2 care managers.

Justification of the Sample Size
Assuming a moderate intra-class correlation of 0.1 within the
same care manager and within the same patient examined by 2
care managers on the enrollment decision outcome, a sample
size of 40 instances per care manager for 10 care managers is
equivalent to totally 74 independent instances after adjusting
for the clustering effect. At a 2-sided significance level of 0.05,
we will have 80% power to identify a 9.7% boost in the
intervention group in the odds that a care manager decides to
enroll the patient in care management. A similar conclusion
holds if the actual correlations differ somewhat from the
assumed ones.

As mentioned right before Aim 1, the above discussion focuses
on COPD. Whenever we mention COPD, the same applies to
asthma and will be developed and tested on asthma also in Aims
1 to 5.

Ethics Approval
We have obtained from IH, UWM, and KPSC institutional
review board approvals for this study.

Results

We are currently downloading clinical and administrative data
from the EDWs of UWM, KPSC, and IH. We plan to start data
analysis in 2020 and finish our study in 2025.

Discussion

Clinical Use of Our Results
Care managers collaborate with the other members in the clinical
care teams. We will automatically explain early warnings and
suggest possible interventions to help clinical care teams form
tailored care plans on the grounds of objective data. This could
facilitate clinicians to review structured data in patient charts
faster and enable closer collaboration between care managers
and the other members in the clinical care teams. Once our
methods find patients at the largest projected risks for future
hospital use and provide explanations, clinicians will check
patient charts, examine factors such as social dimensions and
potential for improvement [102], and make care management
enrollment and intervention decisions.

As time goes by, both the feature patterns linked to high risk
for future hospital use and patient status keep changing. In
clinical practice, we can re-apply our techniques regularly to
the latest clinical, administrative, air quality, and weather data
sets to move patients into and out of care management and to
find new feature patterns over time.

As in the case with LSTM, with information from only one
visit, our proposed predictive models can start making
projections on the patient. Yet, all else being equal, we would
expect the prediction accuracy and risk warning timeliness
reached by our models to improve as the length of patient history
increases.

Generalizability
We will semiautomatically extract predictive and clinically
meaningful temporal features from longitudinal data, solving
an open computer science challenge [60]. Both our feature
extraction and automatic explanation methods will help drop
uninformative variables, reducing the variables used in the
model. This boosts model generalizability and partly addresses
the limitation that one study cannot afford to test models on all
US patients. As Gupta et al [114] showed, many extracted
features represent general properties of the attributes used in
the features and can be valuable for other predictive modeling
tasks. Using the extracted features to build a temporal feature
library to aid feature reuse, we can cut down the effort required
to construct models for other predictive modeling tasks.

The principles of our techniques are general, depending on no
unique characteristic of a specific disease, patient cohort, or
health care system. Care management is also widely used for
patients with diabetes and heart diseases [34], where our
techniques could be used. Our simulation will find out how to
generalize a predictive model to other sites gathering differing
sets of variables and those variables most crucial for
generalization. We will use data from 3 health care systems IH,
KPSC, and UWM to illustrate our techniques on the cases of
COPD and asthma patients. These health care systems include
2 integrated systems (IH and KPSC), an academic system with
most patients referred from other systems (UWM), and many
heterogeneous facilities. These facilities cover 41 hospitals and
424 clinics spread over 3 large geographic areas, ranging from
rural and community urban clinics staffed by a variety of
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clinicians including physicians, nurses, therapists, and advanced
practice practitioners with limited resources to metropolitan
tertiary care hospitals staffed by subspecialists. These systems
use 4 different electronic health record systems: IH uses Cerner,
HELP, and HELP2; UWM uses Cerner and Epic; KPSC uses
Epic. Variation in scope of services, staff composition,
geographic location, cultural background, patient population,
health care system type, and electronic health record system
allows us to find factors generalizable to other facilities
nationwide. Our models will be based on the OMOP common
data model [72] and its related standardized terminologies [73],
which standardize clinical and administrative variables from
≥10 large US health care systems [115,116]. At a minimum,
our models will apply to those systems using OMOP.

After extension, our techniques can be applied to various
decision support applications and diseases and advance clinical
machine learning: (1) more precise models giving earlier
warnings will boost decision support tools for managing limited
resources, such as planning for health care resource allocation

[117] and automatically finding patients tending to be readmitted
soon, triggering home visits by nurses to cut readmissions and
(2) using our techniques can boost prediction accuracy and risk
warning timeliness of other outcomes such as missed
appointments [118], patient satisfaction [119], and adherence
to treatment [120]. This will help target resources, such as
reminder phone calls to cut missed appointments [118], or
interventions to boost adherence to treatment [120].

We expect our more accurate predictive models giving earlier
warnings to have value for clinical practice. Future studies will
test our techniques on some other patient cohorts and diseases,
implement our techniques at UWM, IH, and KPSC for care
management for COPD and asthma, and evaluate the impacts
in randomized controlled trials.

In summary, the techniques that will be developed in this study
will advance machine learning for many clinical applications
and help transform preventive care to be more efficient,
effective, and timely. This will boost outcomes and save
resources.
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