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Abstract

Background: To improve health outcomes and cut health care costs, we often need to conduct prediction/classification using
large clinical datasets (aka, clinical big data), for example, to identify high-risk patients for preventive interventions. Machine
learning has been proposed as a key technology for doing this. Machine learning has won most data science competitions and
could support many clinical activities, yet only 15% of hospitals use it for even limited purposes. Despite familiarity with data,
health care researchers often lack machine learning expertise to directly use clinical big data, creating a hurdle in realizing value
from their data. Health care researchers can work with data scientists with deep machine learning knowledge, but it takes time
and effort for both parties to communicate effectively. Facing a shortage in the United States of data scientists and hiring competition
from companies with deep pockets, health care systems have difficulty recruiting data scientists. Building and generalizing a
machine learning model often requires hundreds to thousands of manual iterations by data scientists to select the following: (1)
hyper-parameter values and complex algorithms that greatly affect model accuracy and (2) operators and periods for temporally
aggregating clinical attributes (eg, whether a patient’s weight kept rising in the past year). This process becomes infeasible with
limited budgets.

Objective: This study’s goal is to enable health care researchers to directly use clinical big data, make machine learning feasible
with limited budgets and data scientist resources, and realize value from data.

Methods: This study will allow us to achieve the following: (1) finish developing the new software, Automated Machine
Learning (Auto-ML), to automate model selection for machine learning with clinical big data and validate Auto-ML on seven
benchmark modeling problems of clinical importance; (2) apply Auto-ML and novel methodology to two new modeling problems
crucial for care management allocation and pilot one model with care managers; and (3) perform simulations to estimate the
impact of adopting Auto-ML on US patient outcomes.

Results: We are currently writing Auto-ML’s design document. We intend to finish our study by around the year 2022.

Conclusions: Auto-ML will generalize to various clinical prediction/classification problems. With minimal help from data
scientists, health care researchers can use Auto-ML to quickly build high-quality models. This will boost wider use of machine
learning in health care and improve patient outcomes.
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Introduction

Barriers in Using Machine Learning to Realize Value
From Clinical Big Data

Overview
To improve health outcomes and trim health care costs, we often
need to perform predictions/classifications using large clinical
datasets (aka, clinical big data), for example, to identify
high-risk patients for preventive interventions. Machine learning
has been proposed as a key technology for doing this. Machine
learning studies computer algorithms, such as support vector
machine, random forest, neural network, and decision tree, that
learn from data [1]. Trials showed machine learning was used
to help the following: (1) lower 30-day mortality rate (odds
ratio [OR]=0.53) in emergency department (ED) patients having
community-acquired pneumonia [2]; (2) increase on-target
hemoglobin values by 8.5%-17% and reduce cardiovascular
events by 15%, hospitalization days by 15%, blood transfusion
events by 40%-60%, expensive darbepoetin consumption by
25%, and hemoglobin fluctuation by 13% in end-stage renal
disease patients on dialysis [3-6]; (3) reduce ventilator use by
5.2 days and health care costs by US $1500 per patient at a
hospital respiratory care center [7]; and (4) lower health care
costs in Medicare patients’ last 6 months of life by 4.5% [8].

Machine learning could support many clinical activities, but
only 15% of hospitals use it for even limited purposes [9].
Compared to statistical methods like logistic regression, machine
learning poses less strict assumptions on distribution of data,
can increase prediction/classification accuracy, in certain cases
doubling it [10-12], and has won most data science competitions
[13]. Historically, machine learning was blamed for being a
black box. A recent method can automatically explain any
machine learning model’s classification results with no accuracy
loss [14,15]. Yet, two hurdles remain in using machine learning
in health care. First, despite familiarity with data, health care
researchers often lack machine learning expertise to directly
use clinical big data. Data scientists take years of training to
gain deep machine learning knowledge. Health care researchers
can work with data scientists, but it takes time and effort for
both parties to communicate effectively. Facing a shortage in
the United States of data scientists estimated as high as 140,000+
by 2018 [16] and hiring competition from companies with deep
pockets, health care systems have a hard time recruiting data
scientists [17,18]. As detailed below, developing a machine

learning model often requires data scientists to spend extensive
time on model selection, which becomes infeasible with limited
budgets. Second, some health care systems such as Kaiser
Permanente, Intermountain Healthcare (IH), University of
Washington Medicine (UWM), Columbia University Medical
Center, Veterans Health Administration, and University of Utah
Health have teams devoted to data cleaning. Health care
researchers can obtain cleaned data from these systems’
enterprise data warehouses (EDWs). In other health care
systems, one needs to laboriously clean data before applying
machine learning. This is often done with the help of database
programmers and/or master-level statisticians, who can also
help with data preprocessing and are easier to find than data
scientists with deep machine learning knowledge. This study
addresses the first hurdle and focuses on automating machine
learning model selection and temporal aggregation, an important
type of data preprocessing.

Barrier 1: Data Scientists Are Needed for Choosing
Hyper-Parameter Values and Algorithms
Each learning algorithm includes two categories of parameters:
hyper-parameters that a machine learning tool user manually
sets prior to model training, and normal parameters
automatically tuned in training the model (see Table 1). Given
a modeling problem such as predicting 30-day hospital
readmission, an analyst manually constructs a model as follows.
First, select an algorithm from many pertinent ones like the
approximately 40 algorithms for classification included in
Waikato Environment for Knowledge Analysis (Weka) [19].
Second, set the values of the selected algorithm’s
hyper-parameters. Third, train the model to tune the normal
parameters of the selected algorithm automatically. In case
model accuracy is unsatisfactory, substitute the algorithm and/or
hyper-parameter values and then retrain the model, while using
some technique to avoid overfitting on the validation set [20-24].
This process is done over and over until the analyst runs out of
time, has a model with good accuracy, or cannot improve
further. If feature selection is considered, in each iteration the
user also needs to choose a feature selection technique from
many applicable ones and set its hyper-parameter values, making
this process even more complex. Many possible combinations
of hyper-parameter values and learning algorithms lead to
hundreds to thousands of laborious and manual iterations to
construct a model. These iterations need machine learning
expertise, are typically done by a data scientist, and become a
barrier [25].

Table 1. Two learning algorithms and their example normal parameters and hyper-parameters.

Example normal parametersExample hyper-parametersLearning algorithm

Support vectors and their Lagrange multipliersRegularization constant C, kernel to use, tolerance parameter, ε for
round-off error, a polynomial kernel’s degree

Support vector machine

Threshold value and input variable used at each
inner node of a tree

Number of independent variables to examine at each inner node of
a classification and regression tree, number of trees

Random forest
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Model accuracy is affected by choice of hyper-parameter values
and learning algorithm. Thornton et al [25] demonstrated that
for the 39 classification algorithms included in Weka, the impact
on model accuracy averages 46% and can be up to 94%. Even
considering a few popular algorithms like random forest and
support vector machine, the impact is still above 20% on
two-thirds of 21 benchmark datasets. The good choice changes
by the particular modeling problem. Computer science
researchers have investigated methods for automatically
searching hyper-parameter values and algorithms [26]. Some
methods can reach equal or better results compared to data
scientists’ manual tuning [27,28]. But in case a large number
of algorithms are examined, efforts like Auto-WEKA
[25,29-31], hyperopt-sklearn [28], and MLbase [32,33] cannot
effectively handle large datasets in reasonable time.

A hurdle to automatic search is the amount of time needed to
assess on an entire dataset a combination of hyper-parameter
values and a learning algorithm. On a modern computer, it takes
2 days to train the champion ensemble model that won the
Practice Fusion Diabetes Classification Challenge [34] one time
on 9948 patients with 133 input or independent variables (aka,
features). Even when disregarding ensembles of more than five
base models, aborting long-running tests, and greatly limiting
the hyper-parameter value search space (eg, allowing no more
than 256 decision trees in a random forest), all impacting search
result quality, more than 30 minutes are needed to test an
average combination on 12,000 rows (ie, data instances) with
784 attributes [35]. To ensure search result quality, automation
efforts often test more than 1000 combinations on the whole
dataset [35], leading to months of search time. On a dataset with
several dozen attributes and several thousand rows, a search
can still take several days [25]. In reality, search time could be
thousands of times longer even with a computer cluster for five
reasons:

1. Model building is iterative. When a collection of clinical
attributes yields low model accuracy, the analyst can include
other attributes to boost accuracy. Every iteration takes a new
search for hyper-parameter values and learning algorithms.

2. Frequently, ensembles of a large number of base models reach
higher accuracy. The training time of an ensemble model rises
proportionally to the number of base models.

3. Hyper-parameter values over a broad range are often used to
achieve higher accuracy. The above champion ensemble model
[34] uses 12 base models. Each random forest base model uses
at least 15,000 decision trees.

4. Numerous rows, often from multiple health care systems,
can reside in a dataset.

5. Numerous attributes (eg, derived from genomic or textual
data) can exist in a dataset. In a hospital without genomic data,
a model for readmission prediction was built using 195,901
patients and 3956 attributes already [36]. An algorithm’s
execution time rises proportionally to the number of attributes
at a minimum and often superlinearly with the number of rows.
Irrespective of whether search is done manually or
automatically, a slow speed in search frequently causes a search

to be terminated early, producing suboptimal model accuracy
[35].

Barrier 2: Data Scientists Are Needed for Temporally
Aggregating Clinical Attributes
Numerous clinical attributes are documented over time needing
aggregation prior to machine learning (eg, weight at each patient
visit is combined to check whether a patient’s weight kept rising
in the previous year). An aggregation period and operator pair
(eg, increasing trend, average, count, and maximum) need to
be specified for every attribute separately to compute an
aggregate value. Usually, clinicians designate pairs and data
scientists perform computation. Numerous pairs could be
clinically meaningful. The ones that produce high accuracy
change by the particular modeling problem and are usually not
known in advance. Granted a modeling problem, the analyst
picks one or more pairs for each attribute manually, then
constructs a model. In case model accuracy is unsatisfactory,
the analyst substitutes pairs for some attributes and reconstructs
the model, while using some technique to avoid overfitting on
the validation set [20-24]. This process between data scientists
and clinicians is frequently repeated many times and becomes
a barrier. No comprehensive aggregation operator list exists,
demanding care to not omit effective operators.

Barrier 3: Data Scientists Are Needed for Generalizing
Models
A model that is built and is accurate in a health care system
often performs poorly and needs to be rebuilt for another system
[37], with differing patients, practice patterns, and collected
attributes impacting model selection [38,39]. This needs data
scientists and is a barrier, as a system often needs many models
for diverse clinical activities.

As often quoted, McKinsey estimates that proper use of clinical
big data can bring more than US $300 billion in value to US
health care each year [16]. The achievable value is surely less,
but still significant. To realize value from data, we need new
approaches to enable health care researchers to directly use
clinical big data and make machine learning feasible with limited
budgets and data scientist resources.

Our Proposed Software
To fill the gap, we will (1) finish developing the open source
software, Automated Machine Learning (Auto-ML), to
efficiently automate model selection for machine learning with
clinical big data and validate Auto-ML on seven benchmark
modeling problems of clinical importance, (2) apply Auto-ML
and novel methodology to two new modeling problems crucial
for care management allocation and pilot one model with care
managers, and (3) perform simulations to estimate the impact
of adopting Auto-ML on US patient outcomes. We hypothesize
that adopting Auto-ML will improve outcomes. Conceptually,
Auto-ML will be an automated version of Weka [19] supporting
automated temporal aggregation. With minimal help from data
scientists, health care researchers can use Auto-ML to quickly
build high-quality models. This expands the human resource
pool for clinical machine learning and aligns with the industry
trend of citizen data scientists, where an organization arms its
talent with tools to do deep analytics [40]. Auto-ML can greatly
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reduce the time and cost required of scarce data scientists, busy
clinicians, and computing resources in developing models;
enable fast turnaround; and facilitate green computing. The
faster a high-quality model gets built and deployed, the earlier
it can bring outcome improvement. Auto-ML is not used to
reach the maximum possible model accuracy in theory, which
is hard to do in reasonable time. Instead, Auto-ML is used to
quickly build high-quality models. If needed, data scientists and
health care researchers can manually fine-tune them further.

Auto-ML will efficiently automate a selection of feature
selection techniques, hyper-parameter values, learning
algorithms, and temporal aggregation operators and periods.
Auto-ML will continuously show, as a function of time given
for model selection, forecasted model accuracy as well as
expected patient outcomes of model use. If trends are not
promising, the user can abort, add more clinical attributes, and
restart. Auto-ML is able to operate on a cluster of computers
for scalable processing.

Gaps in Patient Identification for Care Management
and Our Proposed Solutions

Overview
Aim 1 involves finishing development of Auto-ML. To improve
patient identification and outcomes for care management, Aim
2 involves applying Auto-ML to two new modeling problems
by doing the following: (1) use a health care system’s
incomplete medical (ie, clinical and/or administrative) data to
find future high-cost, diabetic patients and (2) use vast attributes
in modern electronic medical records to find future hospital
users in asthmatic patients.

Widely used for chronic diseases like asthma and diabetes, care
management applies early interventions to high-risk patients to
avoid high costs and health status decline [41-43]. In the United
States, 7.1 million children (9.6%) and 18.7 million adults
(8.0%) [44] have asthma [45,46]. Every year, asthma causes
1.8 million ED visits, 439,000 hospitalizations, US $56 billion
in health care costs [47], and 3630 deaths [44]. Proper use of
care management can cut down asthma exacerbations; trim costs
by up to 15%; drop ED visits and hospital admissions and
readmissions by up to 40%; and enhance quality of life,
treatment adherence, and patient satisfaction by 30%-60%
[42,48-54]. This impacts 63% of annual total asthma costs from
asthma exacerbations [51,55].

For care management to be effective within resource constraints,
we should only enroll patients with the worst prognosis or those
anticipated to have the highest costs. Predictive modeling is
widely used for care management [56] as the best method for
finding high-risk patients [57], but current approaches have two
gaps, as discussed below.

Scope Gap
Often, a health care system has incomplete medical data on
many of its patients, as a patient’s complete data may spread
across several health care systems [58,59]. Typical models for
predicting a patient’s costs assume complete data [60-62]. A
system usually does not apply models to patients on whom it
possibly has incomplete data. As future high-cost patients are

not found, care management is not used on them. This limits
care management’s scope of use to improve outcomes. UWM
is seeking a way to fill the gap, notably for patients with
diabetes. To do this, we will use a constraint to find patients
who tend to get most of their care at UWM, use UWM’s
incomplete data to build a model, and apply it to them to
facilitate care management.

Accuracy Gap
Existing models for predicting hospital use (ie, inpatient stay
or ED visit) in asthmatic patients have low accuracy [63-68].
A typical model [65] missed 75% of future hospital users. A
total of 78% of patients in the high-risk group chosen by the
model did not use hospitals in the next year. Two factors degrade
accuracy. First, several dozen risk factors for hospital use in
asthma are known, including age, gender, race/ethnicity, asthma
medication use, prior health care use, comorbidities (eg,
ischemic heart disease, rhinitis, sinusitis, reflux,
anxiety-depression, diabetes, cataracts, chronic bronchitis, and
chronic obstructive pulmonary disease), allergies, lung function,
number of asthma medication prescribers as a measure of
continuity of care, health insurance type, lab test results (eg,
total serum immunoglobulin E level and eosinophil count), body
mass index, smoking status, secondhand smoke exposure, the
ratio of controller to total asthma medications, frequency of
nonasthma visits, number of procedures, number of diagnoses,
number of prescription drug claims, and asthma questionnaire
results (eg, frequency of asthma symptom occurrence,
interference with normal activity, nighttime awakening, reliever
use for symptom control, forced expiratory volume in 1 second
[FEV1], peak expiratory flow rate, FEV1/forced vital capacity
ratio, asthma control test score, number of exacerbations last
year, controller use, asthma-related acute care, asthma trigger
reduction, and asthma medication) [55,63,65,67-73]. Yet, a
typical model uses fewer than 10 of these risk factors [63-67].
Existing models were built using data from either clinical trials
or outdated electronic medical records gathering limited
attributes [74]. No published model uses all known risk factors
in modern electronic medical records gathering vast attributes
[74]. Second, as with many diseases, many attributes predictive
of hospital use in asthma have not been found yet. If we could
enroll 5% more of future hospital users in care management,
we could avoid up to 8780 hospitalizations and 36,000 ED visits
for asthma each year. IH is seeking a way to fill the gap. To do
this, we will use vast attributes in IH electronic medical records
to build a model predicting hospital use in asthma. The attributes
will cover many known risk factors for hospital use in asthma
and will be used to find new predictive factors.

Innovation
Our study is innovative for multiple reasons:

1. With the new software that will be built as part of our project,
for the first time, health care researchers with limited machine
learning knowledge will quickly be able to build high-quality
machine learning models with minimal help from data scientists.
The cost and time required of data scientists and clinicians in
doing machine learning will be greatly reduced. Also, it will
become possible to widely use machine learning in health care
to realize value from clinical big data and improve patient

JMIR Res Protoc 2017 | vol. 6 | iss. 8 | e175 | p. 4http://www.researchprotocols.org/2017/8/e175/
(page number not for citation purposes)

Luo et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


outcomes. No existing software can greatly cut the long time
required of data scientists in building and generalizing models.

2. We will direct care management to more patients needing it
more precisely than current approaches. For patients on whom
it possibly has incomplete medical data, a health care system
usually does not apply predictive models to find candidates for
care management. Existing models for predicting hospital use
in asthmatic patients were built mainly using a small set of
patients (eg, <1000) or attributes (eg, <10), creating a hurdle in
finding many predictive attributes and their interactions. Many
known risk factors’ predictive power for hospital use in asthma
is unused. In contrast, we will expand the set of diabetic adults
for whom predictive models and care management can be used.
We will use many asthmatic children and attributes to build
new, accurate models for hospital use. The attributes will cover
many known risk factors for hospital use in asthma and will be
used to find new predictive factors. Our approaches to using
incomplete data and vast attributes are new, with principles
generalizable to many clinical applications.

3. Our software will (1) automatically choose hyper-parameter
values, feature selection techniques, and algorithms for a
particular machine learning problem faster than existing
methods; (2) efficiently and automatically choose operators and
periods for temporally aggregating clinical attributes—no such
method currently exists; longitudinal data analysis [75] models
the dependent variable; in contrast, our temporal aggregation
can use any function of independent variables; (3) continuously
show, as a function of time given for model selection, estimated
patient outcomes of model use and forecasted model
accuracy—for the first time, one can obtain feedback
continuously throughout automatic model selection; and (4)
enable fast turnaround. There is no such software at present.

4. We will systematically compile the first list of regularly used
operators for temporally aggregating clinical attributes. The list
can be reused for future clinical data analysis studies. Using
MapReduce [76] for distributed computing, we will provide the
first implementation of many aggregation operators not offered
by current big data software such as Hadoop [77] and Spark
[78].

5. We will estimate the impact of adopting our automated
machine learning software on US patient outcomes in two

scenarios; no such estimate has ever been made. Our impact
estimation method is new and can be applied to other scenarios
and similar software.

In summary, this study is significant in that it makes machine
learning feasible with limited budgets and data scientist
resources to help realize value from clinical big data and
improve patient outcomes. The models that will be built for the
two new modeling problems will help improve care management
outcomes.

Methods

Overview
Auto-ML will be built atop current big data software, enabling
it to operate on one computer or a cluster. Built atop the Hadoop
distributed file system, Spark [78] is a major open source
software system supporting MapReduce [76] for distributed
computing. Spark has an accompanying machine learning
library, MLlib [79]. Spark is able to perform machine learning
more than 100 times quicker than Hadoop [80]. Auto-ML will
be built using the Spark package as well as novel techniques to
address the current software’s limitations.

Aim 1

Overview
Our first aim is to finish developing Auto-ML to automate model
selection for machine learning with clinical big data and validate
Auto-ML on seven benchmark modeling problems of clinical
importance.

Figure 1 compares Auto-ML’s approach of constructing models
to the present one. Four steps are carried out sequentially during
machine learning: temporally aggregate clinical attributes;
choose hyper-parameter values, feature selection techniques,
and algorithms; construct models; and assess models. The
temporal aggregation step is optional (eg, when no repeatedly
recorded attribute exists). Auto-ML will use Spark as the basis
for distributed computing. Auto-ML will be coded in Java so
it can use the open source software systems Spark and Weka,
which all have a Java application programming interface and/or
are coded in Java. The user will specify the storage location of
the dataset in Auto-ML’s graphical input interface. Auto-ML
will then put the dataset into Spark prior to analysis.

Figure 1. Auto-ML’s approach of constructing machine learning models versus the present one.
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Figure 2. Progressive sampling adopted in our draft automatic model selection method.

Auto-ML’s Machine Learning Functions
Auto-ML will integrate MLlib [79] and Weka’s [19] machine
learning functions by altering source code and/or invoking the
Java application programming interfaces. As a broadly used
machine learning tool kit, Weka includes many popular feature
selection techniques and learning algorithms.
distributedWekaSpark [81] is the distributed computing package
of Weka for Spark that is able to operate on a computer cluster.
MLlib is a distributed machine learning library in Spark
implementing some techniques and algorithms supported by
Weka. Auto-ML will support all techniques and algorithms
available in Weka. Whenever possible, Auto-ML will use
MLlib’s code, which fuses with Spark better than
distributedWekaSpark’s code [81].

Weka’s [19] graphical user interface covers feature selection
(optional), model construction, and model assessment. In the
input interface, the Weka user designates the dependent variable,
independent variables, data file, learning algorithm, and the
hyper-parameter values of the algorithm. After the user clicks
the start button, Weka constructs a model and shows its
performance measures. For machine learning, Auto-ML’s
graphical user interface will work similarly with two main
differences. First, in Weka, the user must specify an algorithm
prior to model building. Like Auto-WEKA [25], Auto-ML will
use a hyper-parameter to represent the option of feature selection
technique and automatically select the hyper-parameter values,
technique, and algorithm. The user may override the choice of
Auto-ML. Second, to facilitate the user in tracking the automatic
selection’s progress, Auto-ML shows a curve presenting the
highest accuracy reached over time. The user can terminate the
process at any moment and obtain the most accurate model
built. In the following sections, we outline the main techniques
that we will use to build Auto-ML.

Aim 1 (a)

Overview
For Aim 1 (a), we aim to devise a method to efficiently and
automatically choose hyper-parameter values, feature selection
techniques, and algorithms. Our review paper [26] showed that
few automatic selection methods [25,28-31,82] have been fully
implemented and can manage an arbitrary number of
combinations of hyper-parameter values and many learning
algorithms. All of these methods are similar to or based on the
Auto-WEKA automatic selection approach [25], yet none of
them can efficiently handle large datasets. To overcome the
current methods’ inefficiencies, we drafted a method based on
Bayesian optimization for response surface to rapidly identify,

for a specific modeling problem, a good combination of
hyper-parameter values, a feature selection technique, and a
learning algorithm when a large number of algorithms and
techniques are examined [35,83]. The method represents the
option of technique as a special hyper-parameter; proceeds in
stages; and conducts progressive sampling [84], filtering, as
well as fine-tuning to rapidly shrink the search space. We
conduct fast trials on a small sample taken from the dataset to
drop unpromising combinations early, reserving resources to
fine-tune promising ones. A combination is promising when a
model built using the combination and the sample reaches an
error rate below a beginning threshold. Then, we decrease the
threshold, enlarge the sample, test and adjust combinations, and
cut the search space several times. At the last stage, we find an
effective combination using the full dataset.

More specifically, at each stage our method uses a training
sample and a validation sample. They have no overlap and
contain data instances randomly chosen from the dataset. We
keep the validation sample the same and expand the training
sample across stages (see Figure 2). At the first stage, we start
from a small training sample. For each learning algorithm, we
evaluate a fixed number of random hyper-parameter value
combinations, if any, as well as its default one. To evaluate a
combination, we use the combination, the training sample, and
algorithm to construct a model, then use the validation sample
to assess the model’s error rate. We identify and remove
unpromising algorithms based on the test results. At each
subsequent stage that is not the last one, we enlarge the training
sample. For each remaining algorithm, we construct a separate
regression model, use a Bayesian optimization for response
surface approach to choose several new hyper-parameter value
combinations, and test these combinations. We identify and
remove additional unpromising algorithms based on the test
results. At the last stage, we do some final tests on the full
dataset to come up with the ultimate search result.

Our draft method needs further optimization for efficiency and
effectiveness. To do this, we will expand the draft method to
include multiple optimization techniques: the seven outlined in
our design paper [24] and the six described in the following
sections.

Technique 1
In Technique 1, we will use two validation samples to help
avoid overfitting. At each stage except for the last one, our draft
method [35,83] uses the same validation sample containing a
moderate number of data instances to perform many tests. This
could lead to overfitting to the validation sample [20-23] that
will misguide future search. To help avoid overfitting, we will
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use two validation samples of equal size with as little overlap
as possible, and reduce the frequency of revealing information
about the second validation sample [23]. When the dataset has
enough data instances, the two validation samples will have no
overlap. For a combination of hyper-parameter values and a
learning algorithm, we use the combination and the training
sample to construct a model and assess the model’s error rate
twice, once on either validation sample. Intuitively, the two
error rates would be roughly the same in the absence of
overfitting. If the error rate on the first validation sample is
higher than a specific threshold (eg, in the top 50% of the error
rates on the first validation sample of all combinations tested
so far at this stage), we use it as the combination’s error rate
estimate. Regardless of its exact value, a high error rate estimate
will guide future search to avoid the combination’s
neighborhood. If the threshold is not exceeded, we compare the
error rate on the first validation sample with that on the second.
If the former is not lower than the latter by a certain threshold
(eg, 5%), we use the former as the combination’s error rate
estimate. Otherwise, we use the latter as the combination’s error
rate estimate, as overfitting to the first validation sample is likely
to have occurred.

The above approach uses the same two validation samples across
different stages. Alternatively, if the dataset contains many data
instances, we can use a different validation sample at each stage.
Each time we arrive at a new stage, we redo sampling to obtain
a new validation sample. This also helps avoid overfitting to
the same validation sample that is repeatedly used. We will
compare the two approaches and choose the one that performs
better.

Technique 2
In Technique 2, we will use multiple feature selection techniques
concurrently to drop unpromising features early. Feature
selection and model building time rises proportionally to the
number of features at a minimum. Doing a test is slow when
many features exist in the dataset. To tackle this issue, we
previously proposed that before doing tests, we apply a feature
selection technique to the dataset, or a large sample of it, and
rapidly drop features not likely to have high predictive power
[24]. Yet, like the “no free lunch” theorem [85] shows, no
technique can guarantee good performance in all cases. Relying
on a single technique can be risky, causing predictive features
to be dropped erroneously. To reduce the risk, we will use
multiple techniques concurrently. A feature is dropped only if
at least a certain number of these techniques all regard it as
unpromising.

Technique 3
In Technique 3, at the first stage for each learning algorithm,
we will ensure a minimum number of tests conducted on every
feature evaluator and feature search method. Every feature
selection technique adopts a feature evaluator as well as a feature
search method [25]. At the first stage for no learning algorithm,
our draft method guarantees the number of tests conducted on
every feature evaluator or feature search method. Without
enough tests, we cannot tell how well a feature evaluator or
feature search method works with the algorithm. To tackle this
issue, at the first stage for each algorithm, we will check the

number of tests conducted on every feature evaluator and feature
search method. If the number for a feature evaluator or feature
search method is smaller than a specific threshold (eg, 3), we
will conduct more tests for the feature evaluator or feature search
method to make up the difference. This approach can be adopted
for several other components of a data analytic pipeline [86],
such as handling imbalanced classes and missing values.

Technique 4
In Technique 4, we will share information on the best few results
obtained so far among different learning algorithms. Our draft
method conducts a separate set of tests for every algorithm.
When conducting tests for an algorithm, we may find a
combination of a feature selection technique and its
hyper-parameter values with superior performance. Yet, the
combination may not be tested together with other algorithms,
as its information is not shared with them. This can degrade the
ultimate search result’s quality. To tackle this issue, we will
share information on the best few results obtained so far among
different algorithms. At the end of each stage except for the last
one, we will identify a prechosen number n1 (eg, 3) of
combinations of algorithms, techniques, and hyper-parameter
values that achieve the lowest error rates among all combinations
examined so far. Then we will extract the corresponding n2

combinations of techniques and their hyper-parameter values.
Typically, n2 is equal to n1. Occasionally, n2 can be smaller than
n1, as the same combination of a technique and its
hyper-parameter values may appear in more than one of the n1

combinations. At the next stage, for each remaining algorithm,
we ensure each of the n2 combinations of techniques and their
hyper-parameter values is tested by adding additional tests, if
needed.

Technique 5
In Technique 5, for a dataset with relatively few data instances,
we will dynamically allocate its data instances between the
training and validation samples across stages. A dataset with
relatively few data instances can still be large if it contains many
features. In this case, our draft method uses a fixed portion of
the dataset as the validation sample, which includes a small
number of data instances. Because of insufficient testing, the
error rate estimates obtained on the trained models can be
nonrobust, degrading the ultimate search result’s quality. To
tackle this issue, we will dynamically allocate the data instances
in the dataset between the training and validation samples across
stages. At each stage except for the last one, we give all data
instances that are in the dataset, but not in the training sample,
to the validation sample. With more data instances in the
validation sample, the error rate estimates obtained on the
trained models can be more robust. Krueger et al [87] used a
similar approach to perform fast cross-validation to select a
good hyper-parameter value combination for a given learning
algorithm and modeling problem.

Technique 6
In Technique 6, we will consider distances between
hyper-parameter value combinations when choosing randomly
sampled combinations for testing. At each stage that is neither
the first nor the final one, for each remaining learning algorithm,
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our draft method performs one or more rounds of Bayesian
optimization. In each round, several new and randomly sampled
combinations are chosen out of many for testing and used to
adjust the regression model. For the regression model to guide
search well, the combinations chosen for testing need to have
a reasonable coverage of the hyper-parameter space rather than
all reside in a small region. To achieve this, we will attempt to
ensure that each randomly sampled combination chosen for
testing is separated from each other combination chosen for
testing by at least a specific distance. The distance threshold
may decrease over stages.

Aim 1 (b)
For Aim 1 (b), we aim to devise a method to efficiently and
automatically choose operators and periods for temporally
aggregating clinical attributes. Our design paper [24] outlines
our method for automating the process of temporally aggregating
clinical attributes. We will flesh out our method’s technical
details. Our automation method needs disease-specific
knowledge on aggregation operators and periods compiled by
clinicians and stored in Auto-ML. Various medical datasets use
differing schemas, medical coding systems, and medical
terminologies, forming a hurdle in applying precompiled

knowledge. To tackle this, the automated temporal aggregation
function of Auto-ML demands that the dataset, except for the
dependent variable, complies with the Observational Medical
Outcomes Partnership (OMOP) common data model [88] and
its linked standardized terminologies [89]. Since OMOP
standardizes administrative and clinical attributes from 10 or
more large US health care systems [90,91], Auto-ML can be
adopted for datasets from those systems. We intend to include
support for the National Patient-Centered Clinical Research
Network (PCORnet) [92] and Informatics for Integrating
Biology and the Bedside (i2b2) common data models [93] in
the future.

Aim 1 (c)
For Aim 1 (c), we aim to continuously show, as a function of
time given for model selection, forecasted model accuracy and
projected patient outcomes of model use. During automatic
selection, to be more useful and user friendly, Auto-ML will
show projected patient outcomes of model use and forecasted
model accuracy as a function of time given for model selection
(see Figure 3). Our design paper [24] outlines our method for
doing this. We will flesh out our method’s technical details and
write a user manual for Auto-ML.

Figure 3. The highest model accuracy gained by Auto-ML over time.

Aim 1 (d)

Overview
For Aim 1 (d), we aim to validate Auto-ML on seven benchmark
modeling problems. We will perform tests with health care
researchers using seven modeling problems and datasets that
we worked on before. Each problem uses a different dataset
from a distinct health care system. We chose these problems
because they are related to common diseases, are clinically

important, and have readily accessible datasets. Auto-ML can
be used for other clinical activities.

Subject Recruitment
Via announcements in our institution’s email lists and personal
contact, we will recruit 25 health care researchers from UWM,
which houses approximately 2500 faculty members, most doing
health care research. These health care researchers would regard
their familiarity with medical data at the MD level, but would
regard their machine learning knowledge as below the level
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taught in a typical machine learning course for computer science
undergraduates. We will conduct purposeful sampling to ensure
enough variability [94]. All test participants will have fulfilled
UWM’s required training for information security and privacy
policy. Participants will receive pseudonyms linking their
responses to questions for privacy protection. After giving
consent, each will get a copy of the task description, Auto-ML’s
user manual, and the metadata document detailing the attributes
in the dataset. Upon task completion, each will receive US $200
as compensation for participation.

Computing Environment
We will perform all of our experiments on a Health Insurance
Portability and Accountability Act (HIPAA)-compliant computer
cluster at the University of Washington. After obtaining proper
authorization, all test participants and research team members
at the University of Washington will be able to access the cluster
using their university computers.

Modeling Problem 1
Modeling Problem 1 will consist of predicting the diagnosis of
type 2 diabetes in adult patients in the next year.

Dataset and Patient Population

The clinical and administrative dataset is deidentified and
publicly available from the Practice Fusion Diabetes
Classification Challenge [15,34], containing 3-year (2009-2012)
records as well as the labels of 9948 adult patients from all US
states in the following year. A total of 1904 of these patients
had a diagnosis of type 2 diabetes in the following year. The
dataset comes from an electronic medical record vendor’s EDW;
includes repeatedly recorded attributes; and covers patient
demographics, allergies, diagnoses, immunizations, medications,
smoking status, lab results, and vital signs. We will put this
dataset in the OMOP common data model form with its linked
standardized terminologies.

Model Information

The dependent variable is whether a patient had a diagnosis of
type 2 diabetes in the following year. Two-thirds of patients
will be randomly selected and put into the training set to
construct models. The remaining one-third of patients will form
the test set for assessing model performance. We will use the
area under the receiver operating characteristic curve (AUC)
[19] performance metric.

Modeling Problems 2-7
Each of the six problems from Modeling Problems 2-7 uses a
distinct, deidentified, and publicly available dataset from the
University of California, Irvine machine learning repository
[95] to perform a task: (1) Arcene: classify mass spectrometric
data into cancer versus normal patterns; (2) Arrhythmia: classify
12-lead electrocardiogram recordings into one of 16 groups
about cardiac arrhythmia; (3) Cardiotocography: classify fetal
cardiotocograms into one of three fetal states; (4) Diabetic
Retinopathy Debrecen: use features obtained from the Messidor
image set to detect whether an image includes signs of diabetic
retinopathy; (5) Mammographic Mass: use Breast Imaging
Reporting and Data System attributes and patient age to separate
benign from malignant mammographic masses; (6) Parkinson

Speech: use sound recordings to identify Parkinson’s disease
patients.

No dataset has repeatedly recorded attributes needing temporal
aggregation. The repository [95] includes a detailed description
of the problems and datasets. For each dataset, two-thirds of it
will be randomly selected and put into the training set to
construct models. The remaining one-third will form the test
set for assessing model performance. We will use the accuracy
metric suitable for multi-class classification.

Build Models
We are familiar with the literature on the seven modeling
problems. For each problem, our data scientist Dr Luo (GL)
will work with the clinicians in our team and manually build a
machine learning model with as high accuracy as possible. This
accuracy will serve as the gold standard reflecting current best
practice of model building. Each of the 25 recruited health care
researchers will be randomly given a problem and use Auto-ML
to build models for it.

Performance Evaluation and Sample Size Justification
We will test the hypothesis that at least 60% of health care
researchers can use Auto-ML to achieve model accuracy of at
least 95% of the gold standard. When 60% of health care
researchers can actually achieve model accuracy of at least 95%
of the gold standard, a sample size of 25 health care researchers
produces a one-sided 95% lower confidence limit of 42%.

User Feedback
When model construction is finished, we will use both
open-ended and semistructured questions to survey the 25 health
care researchers. As detailed in our design paper [83], we will
obtain quantitative outcome measures covering model accuracy,
time on task, self-efficacy for constructing machine learning
models with clinical big data, satisfaction, trustworthiness,
adequacy, and quality of documentation. The questionnaire will
contain a text field for gathering comments on Auto-ML. We
will refine and finalize Auto-ML by considering suggestions
from those comments. We will perform a user satisfaction
survey using the System Usability Scale (SUS), a widely used
industry standard [96,97] on overall satisfaction ratings for
products.

Analysis
We will use the accepted inductive approach endorsed by Patton
et al [94,98] to do qualitative analysis. We will put the 25 health
care researchers’ textual comments into ATLAS.ti Version 8
(ATLAS.ti Scientific Software Development GmbH), a
qualitative analysis software tool [99]. The research team will
independently highlight quotations related to the issue of using
Auto-ML. We will examine quotations, categorize them into
precodes, and merge them into categories in multiple iterations.
We will synthesize categories to find general themes.
Quantitative analyses will include adding the scores in the SUS
and presenting every quantitative outcome measure’s descriptive
statistics.
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Aim 2
Overview Aim 2 involves applying Auto-ML and novel
methodology to two new modeling problems crucial for care
management allocation, to which our institutions are seeking
solutions, and pilot one model with care managers. Both
modeling problems use datasets that have repeatedly recorded
attributes. We will put the datasets in the OMOP common data
model form with its linked standardized terminologies. We will
use the same computing environment and recruiting method
mentioned in Aim 1 (d). We will recruit two health care
researchers not engaged in Aim 1 (d). Each will be randomly
given a problem and use Auto-ML to build models for it. Upon
task completion, each will receive US $200 as compensation
for participation.

Modeling Problem 8
Modeling Problem 8 involves the use of vast attributes in
modern IH electronic medical records to predict hospital use in
asthmatic children in the next year.

Patient Population

The patient population consists of IH pediatric patients (0-17
years of age) with asthma in 2005-2016, identified by Schatz
et al’s method [63,100,101] as having the following: (1) at least
one diagnosis code of asthma according to the International
Classification of Diseases, Ninth Revision (ICD-9) (ie, 493.xx),
or the International Classification of Diseases, Tenth Revision
(ICD-10) (ie, J45/J46.*); or (2) two or more “asthma-related
medication dispensings (excluding oral steroids) in a one-year
period, including β-agonists (excluding oral terbutaline), inhaled
steroids, other inhaled anti-inflammatory drugs, and oral
leukotriene modifiers.”

Dataset

By running Oracle database Structured Query Language (SQL)
queries, our contracted IH data analyst will extract from the IH
EDW a deidentified, clinical and administrative dataset, encrypt
it, and securely transfer it to a HIPAA-compliant computer
cluster for secondary analysis. For each of the last 5 years, the
data cover approximately 27,000 asthmatic children. The dataset
is the electronic documentation of approximately 95% of
pediatric care in Utah [102,103] and includes around 400
attributes partially listed in our paper [14]. These attributes
cover many known risk factors for hospital use in asthma and
can be used to find new predictive factors.

Model Information

The dependent variable is whether an asthmatic patient incurred
hospital use—inpatient stay or ED visit—with a primary
diagnosis of asthma (ie, ICD-9 493.xx or ICD-10 J45/J46.*) in
the following year [14,63,64]. As outcomes need to be computed
for the following year, we effectively have 11 years of IH data.
We will construct models using the data in the first 10 years
and acquire a model’s accuracy estimate via testing on the data
in the 11th year. This mirrors future use of the model in practice.
We will use the AUC [19] performance metric.

Modeling Problem 9
Modeling Problem 9 involves using UWM’s incomplete data
to predict individual diabetic adults’ costs in the next year.

Patient Population

The patient population includes UWM adult patients (18 years
of age or older) with diabetes in 2012-2016, identified by the
method in Neuvirth et al [104] as having one or more
hemoglobin A1c test results of 6.5% or higher.

Dataset

A UWM data analyst will run SQL Server database SQL queries
to extract from the UWM EDW a deidentified, clinical and
administrative dataset, encrypt it, and securely transfer it to a
HIPAA-compliant computer cluster for secondary analysis. The
data cover approximately 28,000 diabetic adults per year. Other
details of the dataset are similar to those in Modeling Problem
8.

Model Information

The dependent variable is a diabetic patient’s total allowed cost
to UWM in the following year [60,61]. Allowed costs are less
inflated than billed costs and less subject to variation due to
member cost sharing than net incurred claims [60]. We will
adopt the medical consumer price index [105] to convert all
costs to 2016 US dollars to handle inflation. As outcomes need
to be computed for the following year, we effectively have 4
years of UWM data. We will construct models using the data
in the first 3 years, and acquire a model’s accuracy estimate via
testing on the data in the 4th year. This mirrors future use of

the model in practice. We will use the R2 performance metric
[61].

To fill the scope gap mentioned in the introduction, we will use
a constraint to find patients who tend to get most of their care
at UWM. Intuitively, it is easier to identify future high-cost
patients among them than among others. We will use UWM’s
incomplete data to build a cost prediction model and apply it
to them. Regardless of his/her total future cost at non-UWM
facilities, a patient who will incur high cost at UWM can be a
candidate for care management. By care managing future
high-cost patients identified by the model, we will expand the
scope of using care management to improve outcomes. The
principle of our approach to using incomplete data generalizes
to many other clinical applications.

Several candidate constraints exist: (1) the patient had two or
more visits to UWM in the past year, (2) the patient has a UWM
primary care physician and lives within 5 miles of a UWM
hospital, and (3) the patient saw a primary care physician or
endocrinologist at UWM in the past year and lives within 60
miles (ie, around 1 hour of driving distance) of a UWM hospital.
UWM primary care physicians tend to make referrals within
UWM. Endocrinologists often serve some of the same roles as
primary care physicians. Usually, a patient incurs high cost
because of hospital use. As patients living far away from UWM
hospitals are less likely to use them, UWM tends to have less
of these patients’ medical data. We will refine the three
candidate constraints and investigate others. To select the
constraint to be used, we will use PreManage data that UWM
has on all of its patients. PreManage is Collective Medical
Technologies Inc’s commercial product providing encounter
and diagnosis data on inpatient stays and ED visits at many US
hospitals [106]. PreManage data cover 105 (approximately 94%)
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hospitals in Washington, including the four hospitals of UWM.
Using UWM data and grouper models like the Clinical
Classifications Software system to group diagnosis codes and
reduce features [60], we will build two models: one for
estimating an inpatient stay’s allowed cost and another for
estimating an ED visit’s allowed cost based on patient
demographics and diagnosis data. We will use UWM patient
demographics data, PreManage diagnosis data, and the two
models to estimate the allowed cost of each of a UWM patient’s
non-UWM inpatient stays and ED visits reflected by PreManage
encounter data. By aggregating the estimated costs of individual
non-UWM inpatient stays and ED visits, we will assess each
UWM patient’s portion of cost spent at non-UWM hospitals
and use the portions to evaluate every candidate constraint. If
a health care system does not have enough data to make the two
models reasonably accurate, it can use the average costs of an
inpatient stay and ED visit to assess each patient’s portion of
cost spent at external hospitals. If a system has an insurance
plan’s complete claim data on some of its patients, it can use
the data similarly.

Performance Evaluation and Sample Size Justification
For each of the two new modeling problems, we will test the
hypothesis that health care researchers are able to use Auto-ML
to achieve higher model accuracy than existing approaches. We
will regard Aim 2 as partly successful if we accept the
hypothesis in only one problem, and completely successful if
we accept the hypothesis in both problems.

For Modeling Problem 8, we will compare the accuracies
reached by the model built by the health care researcher and the
model in Schatz et al [65]. The first model is built using
Auto-ML and vast attributes in modern IH electronic medical
records. The second model depicting the existing approach was
built using a few known risk factors for hospital use in asthma.
Using vast attributes can increase prediction accuracy [107].
We will accept the hypothesis when the first model reaches a
higher AUC than the second one by at least .05. Existing
predictive models for hospital use in asthma usually achieve an
AUC far below .8 [63-68]. Assuming these two models’
prediction results have a correlation coefficient of .6 for both
classes and performing a two-sided Z test at a significance level
of .05, a sample size of 561 data instances per class provides
90% power to find a discrepancy of .05 between the two models’
AUCs. The IH data in the 11th year include about 27,000
asthmatic children, offering enough power to test our hypothesis.
Using many patients is essential for improving prediction
accuracy, although only a small sample size is needed to show
statistical significance.

For Modeling Problem 9, we will compare the accuracies gained
by two models. The patient cohort includes those satisfying the

chosen constraint. The first model is built by the health care
researcher using Auto-ML and clinical and administrative data.
The second model depicting the existing approach is a
commercial claims-based one available at UWM achieving an

R2 less than 20%. Although the second model was not designed
for such use, we will apply it to the patient cohort on whom
UWM possibly has incomplete data, which is better than the
normal practice of making no predictions. Adding clinical data
can increase prediction accuracy [108]. We will accept the

hypothesis when the first model reaches a higher R2 than the
second one by at least 5%. Using an F test at a significance
level of .05 and under the assumption of the existence of 20
features from clinical data in addition to 300 or fewer features
used in the second model, a sample size of 443 patients provides

90% power to identify an increase of 5% in R2 from 20%. Using
the second candidate constraint, we estimate that the patient
cohort will cover approximately 22% of diabetic adult patients
at UWM. The 4th year’s UWM data include approximately
28,000 diabetic adults, offering enough power to test our
hypothesis.

Pilot With Care Managers
We will pilot the model the health care researcher will build for
Modeling Problem 9 with UWM care managers. As a UWM
operational project, we are working on this modeling problem
and have access to around 25 UWM care managers. Via
announcing in their email lists and personal contact, we will
recruit five care managers. We will conduct purposeful sampling
to ensure enough variability [94]. All test participants will give
consent and have fulfilled UWM’s required training for
information security and privacy policy. Participants will receive
pseudonyms linking their responses to questions for privacy
protection. Upon task completion, each will receive US $200
as compensation for participation.

We will use our previously developed method [15] to
automatically explain the model’s prediction results. For each
care manager, we will randomly select 20 UWM diabetic adult
patients, half of whom the model predicts will incur a cost of
more than US $30,000. The care manager is unaware of any of
these patients’ outcomes in the next year. For each patient, we
will first show the care manager the historical, deidentified
patient attributes, then show the prediction result and
automatically generated explanations, and finally survey him/her
using both open-ended and semistructured questions. The
questions will cover whether the prediction result and
explanations will change his/her enrollment decision on the
patient, their usefulness, and their trustworthiness as shown in
Table 2. The questionnaire will contain a text field for gathering
comments. We will analyze collected information in a similar
way to Aim 1 (d).
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Table 2. The dependent variable list.

DescriptionVariable

Response to the following question: Will the prediction result and automatically generated explanations change
your enrollment decision on the patient?

Impact on enrollment decision

Response to the following question: How useful is the prediction result? Rating is on a 7-point Likert scale,
ranging from “not at all” (1) to “very useful” (7).

Usefulness of the prediction result

Response to the following question: How useful are the automatically generated explanations? Rating is on a
7-point Likert scale, ranging from “not at all” (1) to “very useful” (7).

Usefulness of the automatically gen-
erated explanations

Response to the following question: In your opinion, how much clinical sense does the prediction result make?
Rating is on a 7-point Likert scale, ranging from “not at all” (1) to “completely” (7).

Trustworthiness of the prediction re-
sult

Response to the following question: In your opinion, how much clinical sense do the automatically generated
explanations make? Rating is on a 7-point Likert scale, ranging from “not at all” (1) to “completely” (7).

Trustworthiness of the automatically
generated explanations

For Modeling Problem 8, medication order and refill information
is needed for identifying asthma. The IH dataset contains this
because IH has its own health insurance plan. If too much refill
information is missed at IH, data from the all-payer claims
database [109] will be used. For Modeling Problem 9, in our
ongoing UWM operational project, we have used around 30
attributes and approximately 6000 patients to build a basic cost

prediction model, which achieved an R2 close to that of the
commercial claims-based model. Since the health care researcher
will use many more attributes and patients that should increase
model accuracy, we expect the cost prediction model built by

him/her to achieve a higher R2 than the claims-based model.

Although using a constraint to fill the scope gap partially
addresses UWM data’s incompleteness, UWM still has
incomplete medical data on some of its patients satisfying the
constraint. For each such diabetic patient, the dependent variable
of the patient’s total allowed cost to UWM is only part of the
patient’s total allowed cost to all systems. The patient’s features
are computed from incomplete data. Both factors may create

difficulty for significantly improving R2. If this occurs, we will
revise the dependent variable to a diabetic patient’s total allowed
cost to UWM or reflected by PreManage data. On average, the
revised dependent variable is closer to the patient’s total allowed
cost to all systems than the original one. Recall that based on
UWM patient demographics and PreManage diagnosis data,
we will use two models to estimate the allowed cost of each of
the patient’s non-UWM inpatient stays and ED visits reflected
by PreManage encounter data. We will supplement UWM data
with PreManage data to make patient data more complete for
computing patient features. This approach of using PreManage
data and revising the dependent variable can be adopted to
improve the accuracy of predicting future hospital use.

For either new modeling problem, if one health care researcher
fails to build a reasonably accurate model, we will recruit
another health care researcher.

Aim 3

Overview
Aim 3 involves performing simulations to estimate the impact
of adopting Auto-ML on US patient outcomes. To determine
Auto-ML’s value for future clinical deployment, we will
estimate the impact of adopting Auto-ML on US patient
outcomes. Trials showed that machine learning helped drop the

30-day mortality rate in ED patients with community-acquired
pneumonia (risk ratio≈OR=0.53, as the mortality rate is much
less than 1) [2] and cut hospitalization days by 15% in end-stage
renal disease patients on dialysis [3]. We will use these two
scenarios to demonstrate our simulation method. Our method
generalizes to other scenarios and similar software. We will use
the same computing environment mentioned in Aim 1 (d). We
first discuss the scenario of ED patients with
community-acquired pneumonia.

Estimate Outcomes
The outcome is 30-day mortality. We will use the latest,
deidentified, and publicly available Nationwide Emergency
Department Sample (NEDS) database [110], including visit
information from approximately 20% of US EDs. Consider the
case with Auto-ML. The likelihood, L, that an ED can
successfully use machine learning for this scenario is equal to
p1× p2. p1 is the probability that a health care researcher in the
ED can build a high-quality machine learning model for this
scenario using Auto-ML. p2 is the probability that the ED can
successfully deploy the model if it can be built. Using Aim
1(d)’s test results on whether health care researchers can use
Auto-ML to achieve model accuracy of at least 95% of the gold
standard, we will conservatively estimate p1’s minimum and
maximum values (eg, by fitting a normal distribution and using
its 2.5 and 97.5 percentile points). Based on his extensive
experience with deploying models [2], Dr Haug (PJH) will
conservatively estimate p2’s minimum and maximum values.
For each of p1 and p2, we will adopt five levels going from the
minimum to the maximum value for sensitivity analysis. The
middle level is the default one and is used for hypothesis testing.

For each ED in the NEDS database, we will retrieve the annual
number of patients with community-acquired pneumonia. We
will simulate whether or not the ED can successfully use
machine learning for this scenario based on the likelihood, L.
If success/not success, for each ED patient with
community-acquired pneumonia, we will simulate whether the
patient will die or not based on the 30-day mortality rate reported
in the paper [2] when using/not using machine learning. The
overall outcome estimate combines the expected outcomes for
all patients and EDs. The patients’ discharge weights in the
NEDS database will be used to obtain national estimates from
sample data in the database. We will handle the case without
Auto-ML similarly by simulating not using machine learning.

JMIR Res Protoc 2017 | vol. 6 | iss. 8 | e175 | p. 12http://www.researchprotocols.org/2017/8/e175/
(page number not for citation purposes)

Luo et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Outcome Evaluation and Sample Size Justification
Outcomes achieved with and without Auto-ML will be
compared. We will test the primary hypothesis that using
Auto-ML will be linked to reduced mortality. In the most
conservative case assuming a proportion of discordant pairs of
10%, a sample size of 1152 patients provides 90% power to
notice an OR of 0.53 [2] using a two-sided McNemar test at a
significance level of .05. Each year, community-acquired
pneumonia incurs 1.5 million ED patient visits [111], giving
adequate power to test the hypothesis. To acquire the whole
range of possible outcomes, we will do sensitivity analysis by
changing the levels of the probabilities p1 and p2, 30-day
mortality rate, and rate reduction gained by machine learning.

The scenario of end-stage renal disease patients on dialysis will
be handled similarly, with the following main differences. The
outcome is number of hospitalization days. The health care unit
is dialysis facility. For each US dialysis facility, we will obtain
its latest annual total number of hospitalization days and patient
count from DialysisData.org [112] to fit a Poisson distribution.
For each dialysis patient in the facility, we will simulate his/her
annual number of hospitalization days using the distribution,
as is often done in the literature [113]. We will test the secondary
hypothesis that using Auto-ML will be linked to reduced
hospitalization days. If the results from a single simulation run
appear too skewed, we will conduct multiple runs and then
average their results.

Ethics Approval
We have already acquired institutional review board approvals
from UWM and IH for our study.

Results

Our paper [35] describes our draft method for automating
machine learning model selection. The paper shows that
compared to the modern Auto-WEKA automatic selection
method [25], on six medical and 21 nonmedical benchmark
datasets, our draft method reduced search time by 28-fold,
classification error rate by 11%, and standard deviation of error
rate due to randomization by 36%, on average. On each of these
datasets, our draft method can finish the search process in 12
hours or less on a single computer. The results obtained on the

medical datasets are similar to those obtained on the nonmedical
datasets. The health care researchers in the Veterans Affairs
Salt Lake City Health Care System have used our draft method
successfully for a clinical research project [114]. One purpose
of this study is to improve the draft method so that it can handle
larger datasets more efficiently and effectively.

At present, we are writing Auto-ML’s design document. We
intend to finish this study by around the year 2022.

Discussion

Auto-ML will generalize to various clinical
prediction/classification problems, as its design relies on no
special property of a specific dataset, patient population, or
disease. Auto-ML will be tested on nine modeling problems
and datasets, each from a distinct health care system. By
providing support for common data models (eg, OMOP [88])
and their linked standardized terminologies adopted by a large
number of systems, Auto-ML can be used to construct models
if attributes required to solve a problem are accessible in a
structured dataset or in one of those common data models. This
enables data integration and facilitates building models with
data from multiple systems. To help users decide whether any
data quality issues need to be handled before modeling,
Auto-ML will show the numbers of attribute values outside
reasonable ranges and numbers of missing values of
nonrepeatedly recorded attributes.

The gaps in scope and accuracy mentioned in the introduction
exist in many clinical applications. The principles of our
approaches to using incomplete medical data and vast attributes
generalize to many other clinical applications beyond the two
on care management listed in the introduction.

In summary, our new software is designed to efficiently
automate machine learning model selection and temporal
aggregation of clinical attributes. By making machine learning
feasible with limited budgets and data scientist resources, our
new software will help realize value from clinical big data and
improve patient outcomes. The models that will be built for the
two new modeling problems will help improve care management
outcomes.
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Weka: Waikato Environment for Knowledge Analysis
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