
Original Paper

Using Computational Approaches to Improve Risk-Stratified
Patient Management: Rationale and Methods

Gang Luo1, PhD; Bryan L Stone2, MD, MS; Farrant Sakaguchi3, MD, MS; Xiaoming Sheng2, PhD; Maureen A

Murtaugh4, PhD, RDN
1School of Medicine, Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
2School of Medicine, Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
3School of Medicine, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, United States
4School of Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States

Corresponding Author:
Gang Luo, PhD
School of Medicine
Department of Biomedical Informatics
University of Utah
Suite 140, 421 Wakara Way
Salt Lake City, UT, 84108
United States
Phone: 1 801 213 3565
Fax: 1 801 581 4297
Email: gangluo@cs.wisc.edu

Abstract

Background: Chronic diseases affect 52% of Americans and consume 86% of health care costs. A small portion of patients
consume most health care resources and costs. More intensive patient management strategies, such as case management, are
usually more effective at improving health outcomes, but are also more expensive. To use limited resources efficiently, risk
stratification is commonly used in managing patients with chronic diseases, such as asthma, chronic obstructive pulmonary
disease, diabetes, and heart disease. Patients are stratified based on predicted risk with patients at higher risk given more intensive
care. The current risk-stratified patient management approach has 3 limitations resulting in many patients not receiving the most
appropriate care, unnecessarily increased costs, and suboptimal health outcomes. First, using predictive models for health outcomes
and costs is currently the best method for forecasting individual patient’s risk. Yet, accuracy of predictive models remains poor
causing many patients to be misstratified. If an existing model were used to identify candidate patients for case management,
enrollment would miss more than half of those who would benefit most, but include others unlikely to benefit, wasting limited
resources. Existing models have been developed under the assumption that patient characteristics primarily influence outcomes
and costs, leaving physician characteristics out of the models. In reality, both characteristics have an impact. Second, existing
models usually give neither an explanation why a particular patient is predicted to be at high risk nor suggestions on interventions
tailored to the patient’s specific case. As a result, many high-risk patients miss some suitable interventions. Third, thresholds for
risk strata are suboptimal and determined heuristically with no quality guarantee.

Objective: The purpose of this study is to improve risk-stratified patient management so that more patients will receive the
most appropriate care.

Methods: This study will (1) combine patient, physician profile, and environmental variable features to improve prediction
accuracy of individual patient health outcomes and costs; (2) develop the first algorithm to explain prediction results and suggest
tailored interventions; (3) develop the first algorithm to compute optimal thresholds for risk strata; and (4) conduct simulations
to estimate outcomes of risk-stratified patient management for various configurations. The proposed techniques will be demonstrated
on a test case of asthma patients.

Results: We are currently in the process of extracting clinical and administrative data from an integrated health care system’s
enterprise data warehouse. We plan to complete this study in approximately 5 years.

Conclusions: Methods developed in this study will help transform risk-stratified patient management for better clinical outcomes,
higher patient satisfaction and quality of life, reduced health care use, and lower costs.
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Introduction

Risk-Stratified Management of Chronic Disease
Patients
Chronic diseases affect approximately 52% of Americans and
consume 86% of health care costs [1]. Example management
strategies for care include case management, disease
management, supported self-care, and wellness promotion (listed
in Table 1 in descending order of intensity). Each strategy is
widely used and has its own benefits and properties [2,3]; for
example, most major employers purchase and nearly all private
health plans offer case management services [2,4] targeting

early interventions at high-risk patients to prevent large
expenditures and avoid deterioration of health status. Proper
use of case management can reduce hospital admissions and
readmissions and emergency department visits by up to 30%
to 40% [3,5-9], lower costs by up to 15% [6-10], and improve
patient satisfaction, quality of life, and treatment adherence by
30% to 60% [5]. A case management program can cost more
than US $5000 per patient per year [6] and typically enrolls
only 1% to 3% of targeted patients due to resource limitations
[11]. For maximal benefit, only patients expected to incur the
highest costs and/or those with the poorest prognoses should
be enrolled.

Table 1. Description of patient management strategies.

DescriptionManagement strategy

“A collaborative process that assesses, plans, implements, coordinates, monitors, and evaluates the options and services
required to meet [a patient’s] health and human service needs” [12]. It involves a case manager who calls the patient
periodically, helps make doctor appointments, and arranges for health and health-related services.

Case management

Example intervention: check electronic medical records to find and call high-risk patients with the disease who require
a specific test, but have not had it for ≥2 years.

Disease management

Example intervention: give patients electronic monitoring tools for self-management.Supported self-care

Example intervention: mail educational materials on how to maintain health.Wellness promotion

Patients’ health care use and costs have a pyramid-like
distribution. A small portion of patients consume most health
care resources and costs [13,14]. For instance, 25% and 80%
of costs are spent on 1% and 20% of patients, respectively
[11,14]. High costs often result from bad health outcomes or
inappropriate use of health care. Typically, more intensive
management strategies are more effective at improving health
outcomes, but are also more expensive. To use limited resources
efficiently, risk stratification is widely used in managing patients

with chronic diseases such as asthma, chronic obstructive
pulmonary disease, diabetes, and heart diseases [13]. As shown
in Figure 1, available management strategies are arranged into
a hierarchy [14]. Patients are stratified based on predicted risk
[6] and this risk can represent either high cost or a bad health
outcome. Higher risk results in more intensive care to match
expected returns [15]. For example, patients with predicted risk
above the 99th percentile are put into case management and so
on.

Figure 1. An example hierarchy of risk-stratified management levels for chronic disease patients.

Problems With the Current Risk-Stratified Patient
Management Approach
The current risk-stratified patient management approach has 3
shortcomings, which result in many patients not receiving the
most appropriate care and greatly degrade its outcomes.

First, existing methods for predicting individual patients’ risk
have low accuracy resulting in misstratification. As shown in
Allaudeen et al [16], clinicians cannot predict well which
patients will become high risk in the future. Criterion-based
modeling uses a priori criteria to describe high-risk patients. It
is ineffective partly due to regression to the mean, in which
most patients who incurred high cost or health care use in one
period will stop doing so in the next period [17]. Frequently, a
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predictive model for individual patient health outcome or cost
is used to automatically identify high-risk patients [5,18-23].
For instance, health plans in 9 of 12 communities are reported
to use predictive modeling to identify candidate patients for
case management [24]. For patients with predictions of the
poorest outcomes or highest costs, case managers manually
review patient charts and make final management decisions.
Predictive modeling greatly outperforms clinicians and
criterion-based modeling [17], and is the best method for
identifying high-risk patients, yet needs improvement.

Existing predictive models for individual patient health
outcomes and costs have low accuracy. When predicting a
patient’s cost, the average error is usually as large as the average

cost [25] and the R2 accuracy measure is less than 20% [26].
When predicting a patient’s health outcome, the area under the
receiver operating characteristic (ROC) curve accuracy measure
is often low, much less than 0.8 [27-31]. These large errors
cause enrollment to align poorly with patients who would benefit
most from a management program [5]. As shown in Weir et al
[23], among the top 10% of patients who incurred the highest
costs, more than 60% were missed in the top 10% risk group
selected by a predictive model. Among the top 1% of patients
who incurred the highest costs, more than 80% and
approximately 50% were missed in the top 1% and 10% risk
groups selected, respectively. Suppose a case management
program could accommodate 1% of affected patients. Even if
case managers had time to manually review the top 10% risk
group selected by the model and made perfect enrollment
decisions, they would still miss half of the top 1% who incurred
the highest costs. The case with health outcomes is similar
[29,30].

Existing predictive models primarily use patient features only,
implicitly assuming that a patient’s health outcome and cost
depend only on the patient’s characteristics and are unrelated
to the treating physician’s characteristics, which are influential.
The use of treating physician’s characteristics, or physician
profile features, has been exploited minimally in predictive
modeling [28] leaving a knowledge gap.

Second, patients are at high risk for different reasons. Complex
predictive models, including most machine learning models
such as random forest, give no explanation for a prediction of
high risk. Existing models also give no suggestion on
interventions tailored to the patient’s specific case. An
intervention addressing the reason for being at high risk tends
to be more effective than nonspecific ones. For instance, for a
patient who lives far from his/her physician and has difficulty
accessing care, providing transportation can be effective.

A patient can be at high risk for multiple reasons each
corresponding to either a single or a combination of multiple
patient and physician profile features. A clinician may give the
patient tailored interventions based on subjective and variable
clinical judgment, but he/she is likely to miss some suitable
interventions due to 3 factors:

1. Large practice variation (eg, by 1.6 to 5.6 times) exists
across different clinicians, health care facilities, and regions
[13,27,32-37].

2. Many features exist. A typical clinician can concurrently
process no more than a single-digit number of information
items [38] making it difficult to identify all these reasons
due to the vast number of possible feature combinations.

3. Clinicians usually give interventions addressing patient
factors only and miss those addressing physician factors.
For instance, a physician may be unfamiliar with the
patient’s disease. Providing the physician continuing
medical education on it can be effective.

Third, thresholds for risk strata are decided heuristically with
no quality guarantee leading to unnecessarily increased costs
and/or suboptimal health outcomes. For instance, total future
cost of all patients factoring in the management programs’costs
is unlikely to be minimized even under the unrealistic
assumption that we know exactly (1) each patient’s future risk
and (2) every program’s impact on each patient’s future cost if
the patient is put into the program. Total future cost implicitly
reflects patient health outcomes and the management programs’
benefits. For instance, fewer hospitalizations usually lead to
lower costs.

Improving Prediction Accuracy, Explaining Prediction
Results, Suggesting Tailored Interventions, and
Computing Optimal Thresholds
New techniques are needed to improve risk-stratified patient
management so that more patients can receive the most
appropriate care. To fill the gap, we will (1) combine patient,
physician profile, and environmental variable features to
improve prediction accuracy of individual patient health
outcomes and costs; (2) develop an algorithm to explain
prediction results and suggest tailored interventions; (3) develop
an algorithm to compute optimal thresholds for risk strata; and
(4) conduct simulations to estimate outcomes of risk-stratified
patient management for various configurations. A physician’s
practice profile contains his/her own information as well as
clinical and administrative data of his/her patients aggregated
historically. We hypothesize that using our techniques will
increase prediction accuracy, improve outcomes, and reduce
costs. The explanations and suggestions provided by our
algorithm can help clinicians prioritize interventions and review
structured attributes in patient charts more efficiently, and will
be particularly useful for clinicians who are junior or unfamiliar
with how to handle certain types of patients. After our methods
identify patients with the highest predicted risks and give
explanations and suggestions, clinicians would review patient
charts, consider various factors (eg, social factors, how likely
a patient’s health outcome will greatly improve [39]), and make
final decisions on the management levels and interventions for
these patients as is often done in case management.

Innovation
This study is innovative for several reasons:

1. We will develop the first algorithm to (1) explain prediction
results, which is critical for clinicians to trust the results
and (2) suggest tailored interventions. Currently no
algorithm can do the latter. Our algorithm will explain
results for any predictive model without degrading accuracy
and solve a long-standing open problem. In contrast,
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existing explanation methods are usually model specific
and decrease accuracy [40,41].

2. We will transform risk-stratified patient management by
personalizing management strategies based on objective
data. At present, clinicians give interventions based on
subjective and variable clinical judgment, and miss some
of the suitable interventions for many high-risk patients.

3. The added value of physician profile features in predicting
health outcomes and costs has never been systematically
studied. We will include physician profile characteristics
to construct new features and build new predictive models
accurate for individual patients.

4. To better predict individual patient costs, we will develop
a new and general technique for reducing features (ie,
independent variables). The technique can increase the
prediction accuracy of any continuous outcome variable
with a complex nonlinear relationship with many
independent variables. This is particularly useful when
standard feature selection techniques [42] cannot narrow
down many independent variables to a few effective
features.

5. We will develop the first algorithm to compute optimal
thresholds for risk strata. These thresholds aim at
maximizing total expected return on the entire patient
population and will be better than those determined
heuristically. Currently no algorithm exists for this purpose.

6. When a predictive model is used, our study will estimate
outcomes of risk-stratified patient management with
multiple management strategies. No such estimates have
been provided before. Previous studies have estimated
outcomes for a single management strategy: case
management [43].

7. We will use a new simulation method to determine which
attributes are the most important to include in the predictive
model. Different combinations of attributes will be used to
determine the minimum performance requirement and allow
tradeoffs for adapting use of our models beyond our setting
based on available attributes. Previous predictive models
have relied on a fixed set of attributes, which may not be
collected by other sites and thus do not generalize beyond
the study site.

8. Often, a specific technique is useful for only a single disease
or decision support application. In contrast, after proper
extension, our new techniques will generalize to a variety
of decision support applications and disease settings.
Examples of opportunities for future studies are (1) more
precise models for health outcomes and costs will augment
various decision support applications for managing limited
resources, such as assisting with health care resource
allocation planning [44] and automatically identifying
patients likely to be admitted or readmitted in the near future
triggering earlier follow-up appointments or home visits
by nurses to reduce admissions and readmissions; (2) adding
physician profile features can improve prediction accuracy
of other outcomes, such as patient satisfaction [45], patient
adherence [46], and missed appointments [47], and facilitate
targeting resources, such as print and telephone reminders
to reduce missed appointments [47] or interventions to
improve treatment adherence [46]; (3) the algorithm for

explanations and suggestions can be used to explain
prediction results and suggest interventions for various
applications, such as to reduce missed appointments; (4)
the threshold computation algorithm can help target
resources for various applications; and (5) our simulation
method can be used to deploy other predictive models in
clinical practice.

In summary, the significance of this study is development of
new techniques to help transform risk-stratified patient
management and personalize management strategies so that
more patients will receive the most appropriate care. Broad use
of our techniques will improve clinical outcomes, patient
satisfaction, and quality of life, and reduce health care use and
cost.

Methods

Machine learning is a computer science area that studies
computer algorithms improving automatically through
experience. Machine learning methods, such as neural network,
decision tree, and support vector machine, are widely used for
predictive modeling [48] and will be used in our study. With
less strict assumptions (eg, on data distribution), machine
learning can achieve higher prediction accuracy, sometimes
doubling it, than statistical methods [11,49,50].

Datasets and Test Cases
This study will use a large clinical and administrative dataset
in Intermountain Healthcare’s enterprise data warehouse (EDW)
for all 4 aims. Intermountain Healthcare is the largest health
care system in Utah, with 185 clinics and 22 hospitals.
Intermountain Healthcare’s EDW contains approximately 9000
tables and an extensive set of attributes [51]. Partial lists of
patient and physician attributes follow.

Patient Attributes
Patient attribute data include admission date and time; age;
orders (eg, medications, laboratory tests, exams, immunizations,
imaging, counseling), including order name, ordering provider,
performing date, and result date; allergies; barriers (eg, hearing,
language, learning disability, mental status, religion, vision);
cause of death; chief complaint; death date; diagnoses; discharge
date; exam result; facility seen for the patient visit; gender;
health insurance; health care cost (eg, billed charge,
Intermountain Healthcare internal cost, and reimbursed cost);
height; home address; immunizations; laboratory test result;
language(s) spoken; medication refills; primary care physician
as listed in the electronic medical record; problem list; procedure
date; procedures; provider involved in the visit; race/ethnicity;
referrals; religion; visit type (eg, inpatient, outpatient, urgent
care, or emergency department); vital signs; and weight.

Physician Attributes
Physician attribute data include age, gender, health insurances
accepted, level of affiliation with Intermountain Healthcare,
office location(s), specialties, type of primary care physician,
and years in practice.
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Summary Statistics of the Dataset
Our contracted Intermountain Healthcare data analyst will
execute Oracle database SQL queries to extract a deidentified
version of the dataset, encrypt it, and transfer it securely to a
password-protected and encrypted computer on which we will
perform secondary analyses. Intermountain Healthcare uses
dedicated tables to track changes in diagnosis and procedure
codes over time. The dataset contains information on patient
encounters over the past 11 years. For the last 5 years, data
captured for children cover more than 400 pediatric primary
care physicians, 360,698 pediatric patients (age zero to 17
years), and 1,557,713 clinical encounters per year. Data captured
for adults cover more than 600 primary care physicians, 878,448
adult patients (age ≥18 years), and 5,786,414 clinical encounters
per year. Asthma prevalence is approximately 7.6% in the
Intermountain Healthcare pediatric population and
approximately 8.6% in the Intermountain Healthcare adult
population. The dataset includes approximately 400 attributes
and represents electronic documentation of approximately 85%
of pediatric care and approximately 60% of adult care delivered
in Utah [33,52]. Intermountain Healthcare dedicates extensive
resources to data accuracy and integrity. Due to its large size
and attribute richness, the dataset gives us many advantages for
exploring the proposed predictive models.

In addition, we will use 21 environmental variables recorded
over 11 years by regional monitoring stations within the
geographic area covered by Intermountain Healthcare. These
variables include particulate matter up to 2.5 μm in size (PM2.5)
and 10 μm in size (PM10), carbon monoxide (CO), nitrogen
dioxide (NO2), sulfur dioxide (SO2), ozone (O3), temperature,
relative humidity, wind speed, precipitation, dew point, and
activities of viruses (adenovirus; enterovirus; human
metapneumovirus; influenza A virus; influenza B virus;
parainfluenza virus types 1, 2, and 3; rhinovirus; and respiratory
syncytial virus). Because the monitoring stations are spread
across a large geographic area including the entire state of Utah,
the readings of the same environmental variable can differ
greatly at different monitoring stations at any time.

Using Intermountain Healthcare data, we will demonstrate our
techniques on the test case of asthma patients. In the United
States, asthma affects 18.7 million adults (8%) [53] and 7.1
million children (9.6%) [54,55]. Patient management strategies
such as case management can ensure proper care to reduce
asthma exacerbations, improve school attendance and
performance, and reduce hospitalizations and emergency
department visits. This impacts both quality of life and 63% of
total annual asthma costs attributable to asthma exacerbations
[8,56].

Our analysis results will use different combinations of attributes
to determine the minimum performance requirement and allow
tradeoffs for adapting use of our models beyond our setting
based on available attributes. Our results will provide a
cornerstone to expand testing of our techniques on other clinical
datasets, patient populations, and diseases beyond asthma in
the future. As patient status and feature patterns associated with
high risk change over time, our techniques can be periodically
reapplied (eg, to move patients across different management
levels and identify newly occurring feature patterns).

Aim 1: Combine Patient, Physician Profile, and
Environmental Variable Features to Improve Prediction
Accuracy of Individual Patient Health Outcomes and Costs

Aim 1a: Build Predictive Models for Individual Patient Health
Outcomes

Framework

We will apply the framework shown in Figure 2 to build
predictive models using patient, physician profile, and
environmental variable features. Environmental variables impact
outcomes of certain diseases such as asthma [57,58]. The models
will be used to predict individual patient health outcomes.

For each physician, we will build a practice profile including
his/her own (eg, demographic) information as well as aggregated
historical information of his/her patients (excluding the index
patient) from the provider’s electronic medical record and
administrative systems. An example physician practice profile
attribute is the number of the physician’s patients with a specific
disease [59]. We will use patient attributes to form patient
features. We will use both patient and physician practice profile
attributes to form physician profile features. Each feature is
formed from one or more base attributes. If the outcome variable
is affected by environmental variables, we will also use
environmental variable attributes to construct features. Predictive
models will be built using patient, physician profile, and
environmental variable features.

There are almost an infinite number of possible features. In
addition, factors such as characteristics of a pediatric patient’s
parents can impact patient outcomes. This study’s purpose is
not to list all possible features, exhaust all possible factors that
can affect patient outcomes, and reach the theoretical limit of
maximum possible prediction accuracy. Instead, our goal is to
demonstrate that adding physician profile features can improve
prediction accuracy and, subsequently, risk-stratified patient
management. A nontrivial improvement in health outcomes
and/or reduction in costs can benefit society greatly. As is typical
with predictive modeling and adequate for our targeted decision
support application, our study focuses on associations.

Figure 2. A framework for building predictive models using patient, physician profile, and environmental variable features.
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Data Preprocessing

We will use established techniques, such as imputation, to deal
with missing values and detect and remove/correct invalid values
[48,60]. For environmental variables, we will use standard
methods [61,62] to obtain aggregate values, such as monthly
averages, from raw values. For administrative and clinical
attributes, we will use grouper models such as the Diagnostic
Cost Groups system to group diseases, procedures, and drugs,
and reduce features [13,25].

Patient Features

We will use standard patient features, such as age and diagnoses,
that have been studied in the clinical predictive modeling
literature [13,27,48]. Commonly used features are listed in Luo
[32] and Schatz et al [29].

Physician Profile Features

Some physician profile features are computed using only
physician practice profile attributes. Examples of such features
are (1) the logarithm of the normalized number of a physician’s
patients with a specific characteristic, such as a specific disease,
gender, race, or age range (a logarithm is used to diminish the
difference in the number across physicians); (2) the logarithm
of the number of specific procedures performed by a physician;
(3) the mean outcome of a physician’s patients with a specific
disease (if a physician does not have enough patients with a
specific disease, we will set the disease’s mean outcome in the
physician’s practice profile to the mean outcome of all patients
with the disease); (4) the average cost of a physician’s patients
with a specific disease; (5) the average ratio of chronic controller
to total asthma medications of a physician’s asthma patients,
which is an asthma care quality measure [63-66]; (6) the mean
of a feature of a physician’s (pediatric) asthma patients with
desirable/undesirable outcomes; (7) a physician’s age; (8) a
physician’s total office hours per week; (9) a physician’s years
in practice; and (10) a physician’s specialty.

Some physician profile features are formed by combining patient
and physician practice profile attributes, characterizing the
match of patient and physician. Examples of such features are
(1) the distance between the physician’s office and patient’s
home, (2) an indicator of whether the physician and patient are
of the same gender [67], (3) an indicator of whether the
physician and patient speak the same language, and (4) an
indicator of whether the physician accepts the patient’s
insurance.

The preceding lists of physician profile features are only for
illustration purposes and are by no means exhaustive. More
physician profile features will be investigated in this study.
When a patient is managed by multiple physicians
simultaneously, the patient’s outcomes are affected by the profile
features of all these physicians. A traditional method for
handling this situation is to use episode grouper software to
split the whole span of patient care into episodes and assign
each episode to a single physician [13,68]. An episode of care
is “a series of temporally contiguous health care services related
to treatment of a given spell of illness or provided in response
to a specific request by the patient or other relevant entity”

[27,69]. Apart from the episode method, we will investigate
other methods to combine multiple physicians’profile features.

Environmental Variable Features

We will use standard environmental variable features such as
monthly averages from clinical predictive modeling literature
[57].

Definition of Asthma Cases and Outcomes

As test cases, we will focus on primary care physicians and
develop and test our idea using (1) pediatric asthma and (2)
adult asthma. The method described in Schatz et al [29,70,71]
will be used to identify asthma patients. A patient is considered
to have asthma if he/she has (1) at least one International
Classification of Diseases, Ninth Revision (ICD-9) diagnosis
code of asthma (493.xx) or (2) at least 2 asthma-related
medication dispensing records (excluding oral steroids) in a
1-year period, including inhaled steroids, beta-agonists
(excluding oral terbutaline), oral leukotriene modifiers, and
other inhaled antiinflammatory drugs [29]. We will use 2
outcome measures for asthma: (1) primary outcome—whether
acute care (inpatient stay, urgent care, and emergency
department visit) with a primary diagnosis of asthma (ICD-9
code: 493.xx) occurred for a patient in the following year
[28,29,31,32,56,72,73] and (2) secondary outcome—the total
amount of reliever medication and oral steroid medication for
acute asthma exacerbations that a patient refilled in the following
year. Total refill amount reflects the number and degree of
asthma exacerbations experienced by the patient [63,64] and is
available in our dataset.

Predictive Models

We will use Weka [74], a widely used open-source machine
learning and data mining toolkit, to build predictive models.
Weka integrates an extensive set of popular machine learning
algorithms, ensemble techniques combining multiple predictive
models, feature selection techniques, and methods for handling
the imbalanced class problem. Both numerical and categorical
variables appear in clinical, administrative, and environmental
data. We will use supervised algorithms that can handle both
types of variables, such as decision tree and k-Nearest Neighbor.
We will test every applicable algorithm and manually tune
hyperparameters.

The accuracy achieved by state-of-the-art predictive models is
usually far below 80% [28,29]. We would regard Aim 1a (to
build predictive models for individual patient health outcomes)
partially successful if we can improve accuracy by 10% or more
for either pediatric or adult asthma. We would regard Aim 1a
completely successful if we can improve accuracy by 10% or
more for both pediatric and adult asthma. Given a set of features,
we will use 3 methods to improve model accuracy. First, some
features are unimportant or highly correlated with one another,
which may degrade model accuracy. To address this, we will
use standard feature selection techniques, such as the
information gain method, to identify important features that
will be used in the model [28,42,74]. Second, for a categorical
outcome variable with 2 values, the corresponding 2 classes in
our dataset can be imbalanced, meaning many more instances
exist for one class than the other. This can potentially degrade
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model accuracy. We will use standard techniques such as
Synthetic Minority Oversampling Technique (SMOTE) to
address this [74]. Third, we will try ensemble techniques, such
as random forest, that combine multiple models and usually
work better than individual models [74].

Accuracy Evaluation and Sample Size Justification

We have 11 years’ data. We will use a standard approach to
train and test predictive models. We will conduct stratified
10-fold cross validation [74] on the first 10 years’ data to train
and estimate the accuracy of models. The 11th year’s data will
be used to assess the best models’ performance reflecting use
in practice. For categorical outcome variables, we will use the
standard performance metric of the area under the curve (AUC)
of the ROC [74] to select the best model. For continuous
outcome variables, we will use the standard performance metric

of R2 to select the best model and also report the Cumming’s
prediction measure (equivalent to the mean absolute prediction
error) [25,32]. To determine the clinical, administrative, and
environmental variable attributes essential for high accuracy,
backward elimination [48] will be used to drop independent
variables as long as the accuracy does not drop by more than
0.02.

We will test the hypothesis that adding physician profile features
can increase prediction accuracy twice—once for children and
once for adults. We will compare the accuracies achieved by 2
predictive models using the best machine learning algorithm.
The first model will use patient, physician profile, and
environmental variable features; the second, only patient and
environmental variable features. We will accept the hypothesis

if the first model achieves higher accuracy (AUC or R2) than
the second model by 10% or more.

Consider the categorical outcome variable of acute care usage
with 2 values (classes). A predictive model using only patient
and environmental variable features usually achieves an AUC
far less than 0.8 [28,29]. Using a 2-sided z test at a significance
level of .05 and assuming for both classes a correlation
coefficient of .6 between the 2 models’ prediction results, a
sample size of 137 instances per class has 90% power to detect
a difference of 0.1 in AUC between the 2 models. The 11th
year’s data include approximately 27,000 children and 75,000
adults with asthma, providing adequate power for testing our
hypothesis. To train a predictive model well, typically the ratio
of the number of data instances to the number of features should
be 10 or more. In our case, a few hundred features at most will
be used; thus, our dataset would be large enough for training
the predictive models. The case with the continuous outcome
variable is similar (see Aim 1b: Sample Size Justification).

Aim 1b: Build Predictive Models for Individual Patient
Costs.
We will use an approach similar to that in Aim 1a, but change
the prediction target from health outcomes to individual patients’
total costs in the following year [13,25,27]. Each medical claim
is associated with a billed cost, an Intermountain Healthcare
internal cost, and a reimbursed cost [13]. We will use the
Intermountain Healthcare internal cost [33], which is less subject
to variation due to member cost-sharing [13], and reflects actual

cost more closely. To address inflation, we will standardize all
costs to 2014 US dollars using the medical consumer price index
[75].

In addition to the rare use of physician profile features, 2 other
major reasons also cause low accuracy in predicting an
individual’s cost. First, most existing work on predicting costs
uses linear regression models [13,25,27]. In reality, costs do
not follow a linear model [26]. Second, the cost of a patient
with a specific disease is the cost of treating all his/her diseases
[25]. To consider this factor, each model uses many features or
independent variables (eg, one feature per disease) and can
easily have insufficient training data [48]. To address these 2
problems, we will try nonlinear, disease-specific, machine
learning models, which were proposed in a previous paper [32],
but have not been implemented so far. This method’s key idea
is to reduce features by merging several less important features
into one feature while maintaining important features as
separate. The current approach of identifying important features
and grouping other features is manual. We will also investigate
automatic approaches. For example, we can regard the top
features with the largest associations with the outcome variable
as important ones. The remaining features are clustered using
a similarity metric to form groups. The automatic approach is
general and can be used to improve prediction accuracy of any
continuous outcome variable that has a complex nonlinear
relationship with many independent variables.

Sample Size Justification

In predicting an individual’s cost, a predictive model using only
patient and environmental variable features usually achieves an

R2 <20% [26]. Using an F test at a significance level of .05 and
assuming the presence of 70 patient and environmental variable
features, a sample size of 245 patients has 90% power to detect

an increase of 10% in R2 attributed to 30 physician profile
features. The 11th year’s data include approximately 27,000
children and 75,000 adults with asthma, providing adequate
power for testing our hypothesis of an increase of 10% or more

in R2.

Our goal is to achieve a 10% or more improvement in accuracy.
If our models cannot achieve high accuracy on the entire group
of asthma patients, we will build separate models for different
subgroups of asthma patients. Patient subgroups are defined by
specific characteristics, such as age, prematurity, comorbidity,
or insurance type that are usually independent variables of the
original models. If our models still cannot achieve high
accuracy, we will conduct subanalyses to identify patient
subgroups on which our models perform well. In this case, our
final models will be applied only to the identified patient
subgroups.

A missing data problem occurs when a patient has several
physicians belonging to different provider groups, with no single
provider having complete information on the patient. We
anticipate that adding physician profile features can improve
prediction accuracy even if some data are missing. The missing
data problem is unlikely to be an issue for children in our case,
as Intermountain Healthcare provides approximately 85% of
pediatric care in Utah [52]. If the Intermountain Healthcare
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EDW misses too much data for adults, we will use claim data
in the all-payer claims database [76] to compensate. In the future
when applying our predictive models to other health care
systems, this compensation strategy can be used. Also, we
expect missing data problems to be uncommon in health
maintenance organization settings where all physicians
managing the patient belong to the same provider group and
the provider’s electronic medical record and administrative
systems usually have all medical data collected on the patient
[77].

As mentioned previously, identifying asthma requires
medication order and refill information. Our dataset includes
this information because Intermountain Healthcare has its own
health insurance plan (SelectHealth [78]). If the Intermountain
Healthcare EDW is missing too much refill information, we
will use claim data in the all-payer claims database [76] to
compensate. If adding physician profile features cannot
significantly increase prediction accuracy for asthma, we will
choose chronic obstructive pulmonary disease or heart diseases
for Aims 1 to 4.

We have a large dataset. If we experience scalability issues
using Weka, we will use a parallel machine learning toolkit,
such as Spark’s MLlib [79-81], to build predictive models on
a secure computer cluster available to us at the University of
Utah Center for High Performance Computing [82].

Aim 2: Develop an Algorithm to Explain Prediction
Results and Suggest Tailored Interventions
For patients with predicted risk greater than a predetermined
threshold, such as the 95th percentile, this aim will explain
prediction results and suggest tailored interventions. These
explanations and suggestions can help clinicians make final
decisions on the management levels and interventions for these
patients.

Prediction accuracy and model interpretability are frequently 2
conflicting goals. A model achieving high accuracy is usually
complex and difficult to interpret. How to achieve both goals
simultaneously has been a long-standing open problem. Our
key idea to solve this problem is to separate prediction and
explanation by using 2 models concurrently, each for a different
purpose. The first model makes predictions and targets
maximizing accuracy. In this study, this model is the best one
built for the outcome variable in Aim 1. The second model is
rule-based and easy to interpret. It is used to explain the first
model’s results rather than make predictions. The rules used in
the second model are mined directly from historical data rather
than coming from the first model. For each patient whom the
first model predicts to be at high risk, the second model will
show zero or more rules. Each rule gives a reason why the
patient is predicted to be at high risk. Because some patients
can be at high risk for rare reasons that are difficult to identify,
we make no attempt to ensure that at least one rule will be shown
for every patient predicted to be at high risk. Instead, we focus
on common reasons that are more important and relevant to the
patient population than rare ones. We expect most high-risk
patients to be covered by one or more common reasons.

We will use an associative classifier [83-85] from the data
mining field as the second model. Associative classifiers can
handle both numerical and categorical variables and be built
efficiently from historical data. Compared with several other
rule-based models, an associative classifier includes a more
complete set of interesting and useful rules and can better
explain prediction results. For ease of description, our
presentation focuses on the case that each patient has exactly
one data instance (row). The case in which a patient has more
than one data instance can be handled similarly. We will proceed
in 3 steps.

In step 1, association rules are mined from historical data. As
mentioned in Aim 1, each patient is described by the same set
of patient, physician profile, and environmental variable features
and labeled as either high risk or not. An associative classifier
includes a set of class-based association rules. Each rule includes
a feature pattern associated with high risk and is of the form:
p1 AND p2 AND ... AND pk is associated with high risk. The
value of k varies across different rules. Each item pi (1≤i≤k) is
a feature-value pair of the form (f, v) indicating that feature f
takes a value equal to v (if v is a value) or within v (if v is a
range). The rule suggests that a patient is likely to be at high
risk if he/she satisfies p1, p2, ... , and pk. An example rule is the
patient was hospitalized for asthma last year AND the patient’s
primary care physician has fewer than 10 asthma patients is
associated with high risk.

For a given association rule, the percentage of patients satisfying
the rule’s left side and being at high risk reflects the rule’s
coverage and is called the rule’s support. Among all patients
satisfying the rule’s left side, the percentage of patients at high
risk reflects the rule’s accuracy and is called the rule’s
confidence. An associative classifier includes association rules
at a given level of minimum support (eg, 1%) and confidence
(eg, 70%). These rules can be efficiently mined from historical
data using existing techniques [83-85], which can eliminate
redundant and noisy rules. Because we need only rules
suggesting high risk, we can mine desired feature patterns (ie,
the rules’ left side) from high-risk patients’ data rather than
from all patients’ data to improve the efficiency of rule
generation.

Typically, many association rules will be mined from historical
data [83-86]. Keeping all these rules will overwhelm clinicians.
To address this issue, we will use 3 methods to reduce the
number of rules. First, in forming rules, we will consider only
features appearing in the first model that is used to make
predictions. As mentioned in Aim 1a, many nonessential features
will be removed during feature selection and backward
elimination when building the first model. Second, we will focus
on rules with no more than a predetermined small number of
items (eg, 4) because long feature patterns are difficult to
understand and act on [83]. Third, users can optionally specify
for a feature what values or type of range (eg, stating that the
feature is above a threshold) may potentially indicate high risk
and appear in rules [40,87]. The other values or types of range
are not allowed to appear in rules. This also helps form clinically
meaningful rules.
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In step 2, interventions will be listed for the mined association
rules. Through discussion and consensus, our clinical team will
examine mined association rules and remove those that make
little or no clinical sense. For each remaining rule, the clinicians
will list zero or more interventions addressing the reason given
by the rule. Example interventions for patients include (1)
provide transportation or telemedicine for a patient living far
from his/her physician, (2) schedule longer or more frequent
doctor appointments for a patient with multiple comorbidities,
(3) schedule appointments with nurse educators or clinical
pharmacists for a patient with multiple comorbidities, (4) arrange
language service for a doctor appointment if the patient and
physician speak different languages, and (5) give wearable air
purifiers to certain types of asthma patients living in an area
with bad air quality.

Example interventions at the system level include (1) provide
the primary care physician continuing medical education on a
specific disease, cultural competence, women’s health, or
pediatric health if he/she is unfamiliar with or cannot well
manage the disease, patients of a particular race, diseases in
women, or pediatric diseases (a physician may be unfamiliar
with a disease if he/she has few patients with it; a bad mean
outcome of a physician’s patients with the disease may indicate,
but not always, that the physician cannot manage the disease
well); (2) extend physician office hours; and (3) open a new
primary care clinic in an area with no such clinic nearby.

Interventions for patients are displayed to clinicians in step 3.
Interventions at the system level are optional and may be viewed
only by managers of the health care system. We call a rule
actionable or nonactionable based on whether or not at least
one intervention is associated with it. The remaining rules and
their associated interventions will be stored in a database to
facilitate reuse.

In step 3, prediction results are explained and tailored
interventions are suggested. At prediction time, for each patient
identified as high risk by the first model, we will find all
association rules whose left side is satisfied by the patient using
an index for rules [84]. We will display the actionable rules
above the nonactionable ones, each in descending order of
confidence [84]. If 2 rules have equal confidence, the rule with
higher support will be ranked higher. If 2 rules have the same
confidence and support, the one with fewer items will be ranked
higher. Our rule sorting method differs from several traditional
ones [83-85] because our goal is to explain the prediction result
for a patient rather than to maximize the average prediction
accuracy in a patient group. We will list confidence and
associated interventions, if any, next to each rule to help the
clinician identify suitable tailored interventions. By default, we
will show no more than a predetermined small number of rules
(eg, 3). If desired, the clinician can opt to view all rules
applicable to the patient.

Commonly used support and confidence thresholds [83-85] may
not be suitable for our case, in which only a small percentage
of patients are at high risk. We will adjust the support and
confidence thresholds if the commonly used ones cannot
produce enough meaningful association rules. By setting the
thresholds low enough, we will produce meaningful rules at the

expense of our clinicians spending time removing rules that
make little or no clinical sense. Because existing predictive
models give no suggestion on tailored interventions, we will
regard Aim 2 successful if a nontrivial percentage (eg, ≥20%)
of high-risk patients are covered by actionable rules.

Performance Evaluation
The algorithm for explanations and suggestions will be evaluated
in Aim 4.

Aim 3: Develop an Algorithm to Compute Optimal
Thresholds for Risk Strata
In risk-stratified management, chronic disease patients are
stratified into multiple levels [14,15]. This aim will compute
the optimal thresholds for these levels that minimize total future
cost of all patients factoring in the management programs’costs.
Total future cost implicitly reflects patient health outcomes,
health care use, efficiency of care, and the management
programs’benefits. For instance, fewer hospitalizations usually
lead to lower costs. The following discussion focuses on
stratification based on predicted patient risk of experiencing a
specific type of undesirable event (eg, hospitalization or
emergency department visit). The case of stratification based
on predicted cost or with more than one type of undesirable
event can be handled similarly. Our discussion applies to any
predictive model and is based on a fixed period in the future,
such as the next 12 months.

Threshold Computation Algorithm
We will conduct quantitative analysis to determine the optimal
management level for each risk percentile. We will proceed
through the risk percentiles one by one, from the highest to the
lowest. Given a risk percentile, we will compute for each
management level the average future cost per patient in the
percentile if patients in the percentile are put into the level. The
level with capacity remaining in its management program and
the lowest average future cost per patient will be chosen for the
risk percentile.

More specifically, consider a risk percentile and an average
patient whose predicted risk falls into the percentile. If the
patient is enrolled in a management program, we estimate that
the patient’s future cost will change by delta = the program’s
cost – the program’s benefit gained by reducing undesirable
events=ci–avg_ne*p*ce compared with no enrollment. Here, ci

is the program’s average cost per patient. Factors such as
increased medication cost due to better medication adherence
are included in ci. avg_ne is the average number of undesirable
events that a patient in the risk percentile will experience in the
future. p is the percentage of undesirable events the management
program can help avoid, reflecting the program’s benefit. ce is
the average cost of experiencing the undesirable event once. ci

and p can be obtained from statistics reported in the literature
for the management program [39,88]. avg_ne can be obtained
by making predictions on historical data and checking the
corresponding statistics for the risk percentile. ce is obtained
from statistics on historical data. The management level with
the smallest delta is optimal for the risk percentile. If no statistics
on ci and p of a management program are available in the
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literature, the clinician in our research team (Dr Stone) will
provide rough estimates based on experience. We will perform
sensitivity analysis when choosing thresholds by varying the
estimated values of ci and p to obtain the full spectrum of
possible outcomes in Aim 4.

The preceding method performs an exhaustive search among
all management levels for each risk percentile. In practice, we
would expect avg_ne to decrease as the predicted patient risk
of experiencing undesirable events becomes smaller. We will
investigate using this property to reduce the search space when
going through the risk percentiles one by one, from the highest
to the lowest.

Performance Evaluation
The threshold computation algorithm will be evaluated in Aim
4.

Aim 4: Conduct Simulations to Estimate Outcomes of
Risk-Stratified Patient Management for Various
Configurations
To determine a predictive model’s value for future deployment
in clinical practice, we need to estimate outcomes of
risk-stratified patient management when the model is used and
determine how to generalize the model to differing sites
collecting different sets of attributes. Our models will be built
on Intermountain Healthcare datasets. Our simulations will
guide how to deploy the models in another health care system.
No previous study has either estimated outcomes for a model
with more than one management strategy or determined the
attributes most important for generalizing the model. We will
demonstrate our simulation method for the task of risk-stratified
management of (1) asthmatic children and (2) asthmatic adults
by using our models for predicting acute care use for asthma in
the following year (see Aim 1a: Definition of Asthma Cases
and Outcomes), the hierarchy of risk-stratified management
levels shown in Figure 1, and our algorithms described in Aims
2 and 3. Our simulation method is general and can be used to
deploy other models in clinical practice. We will first evaluate
the technique in Aim 1.

Outcomes
We will focus on the outcomes of costs, hospital admissions,
and emergency department visits in the following year. Cost is
the primary outcome, reflecting health care use and efficiency
of care. Other outcomes are secondary and are indirectly
reflected in costs.

Estimate Outcomes
Given a set of attributes and a predictive model, we will estimate
each outcome. We will use the same method as in Aim 1 to
train the model on the first 10 years’ data. For the 11th year’s
data, we will obtain prediction results, compute thresholds for
risk strata, then estimate the outcome in a way similar to Aim
3. For example, consider a patient who will have a cost of h and
experience ne undesirable events in the following year with no
program enrollment. If the patient is enrolled in a management
program, we estimate that the patient’s future cost will become
h + ci–ne*p*ce, where ci, p, and ce are as defined in Aim 3. The

overall outcome estimate is the aggregate of estimated outcomes
for all patients. Using a similar approach, we can identify the
minimum accuracy requirement of the model for it to be
clinically valuable.

Sensitivity Analysis
Intermountain Healthcare collects an extensive set of attributes.
Another health care system may collect only a subset of these
attributes. To ensure the model’s generalizability, we will test
various combinations of attributes and estimate outcomes when
the modified model is used. The estimate will identify which
attributes are critical. If an important attribute is unavailable in
a specific health care system, the estimate can suggest alternative
attributes with minimal negative impact on outcomes.

Our full model will use up to 400 attributes. It is not possible
to conduct simulations for every possible combination of these
attributes. Instead, we will use an attribute grouping approach
associating attributes likely to coexist, such as attributes
associated in a laboratory test panel, based on our clinical
expert’s judgment. We will construct and publish a table listing
possible combinations of attributes by groups, including
outcomes estimated through simulations and the predictive
model’s trained parameters. A health care system interested in
deploying the model can use the table to determine expected
outcomes for their data environment and identify attributes that
need to be collected. One entry in the table will correspond to
the attributes available in the Observational Medical Outcomes
Partnership (OMOP) common data model [89], which
standardizes clinical and administrative attributes from more
than 10 large health care systems in the United States [90]. The
model in this entry will directly apply to at least those health
care systems. If conducting simulations for the many
combinations of attribute groups is too slow on one computer,
we will parallelize simulations on a secure computer cluster
available to us [82].

Outcome Evaluation and Sample Size Justification
We will compare outcomes achieved by 2 predictive models
using the best machine learning algorithm. The first model will
use patient, physician profile, and environmental variable
features; the second only patient and environmental variable
features. We will test 3 hypotheses: adding physician profile
features will be associated with reduced (1) costs, (2) hospital
admissions, and (3) emergency department visits. We will test
each hypothesis twice, once for children and once for adults.
Cost data will be log-transformed due to skewed distribution
[13]. We will accept the primary hypothesis if the first model
can reduce the log cost by 10% multiplied by its standard
deviation compared with the second model. One-sided
paired-sample t test will be used to test the difference in log
cost between the 2 models’ outcomes. McNemar’s test will be
used to test the difference in hospital admissions and emergency
department visits. At a significance level of .05, a sample size
of 857 instances has 90% power to confirm the primary
hypothesis. The 11th year’s data include approximately 27,000
children and 75,000 adults with asthma, providing adequate
power for testing the primary hypothesis.
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We will do 2 similar analyses to compare our threshold
computation algorithm versus the current method of determining
thresholds heuristically (evaluate the technique in Aim 3) and
our algorithm for explanations and suggestions versus the
current method of giving no explanation and suggestion
(evaluate the technique in Aim 2). Physician profile features
will be used in either analysis. In the first analysis, we will use
the heuristically determined thresholds reported in the literature
[15]. In the second analysis, we will use our threshold
computation algorithm and estimate outcomes of our algorithm
for explanations and suggestions. For an intervention, we will
use statistics on its benefits and average cost per patient from
the literature [39] where available. If no information is available,
the clinician in our research team (Dr Stone) will conservatively
estimate these numbers’ minimum and maximum values based
on experience. For each number, we will use 5 levels ranging
from the minimum to the maximum value. To obtain the entire
spectrum of possible outcomes, we will perform sensitivity
analysis by varying the level and percentage of suggested
interventions that clinicians will use. For the current method of
giving no explanation and suggestion, we will proceed in a
similar way by letting Dr Stone estimate the lower and upper
bounds of the likelihood that clinicians will use an intervention.
If Dr Stone has difficulty estimating the likelihood that clinicians
will use an intervention, we will interview clinicians using
sample patient cases to help with the estimation. Based on its
own estimate of the situation, a health care system can check
where in the spectrum it will fall.

Ethics Approval
We have already obtained institutional review board approvals
from the University of Utah and Intermountain Healthcare for
this study.

Results

We are currently in the process of extracting clinical and
administrative data from the Intermountain Healthcare EDW.
We plan to complete this study in approximately 5 years.

Discussion

Our techniques’ principles are general and rely on no special
property of any disease, patient population, or health care

system. Just as predictive models are used for case management
for various diseases and patient populations [13,24,30,31], after
proper extension our techniques can be used for a range of
decision support applications in various settings (see the
innovation subsection of the Introduction). Our simulation
method will determine how to generalize a predictive model to
differing sites collecting different sets of attributes and the
attributes most important for generalization. Using data from
an integrated health care system with many heterogeneous
facilities spread over a large geographic area, we will
demonstrate our techniques on the test case of asthma patients.
These facilities include 22 hospitals and 185 clinics, ranging
from tertiary care hospitals in metropolitan areas staffed by
subspecialists to community urban and rural clinics staffed by
family physicians and general practitioners with limited
resources. Variation in geographic location, patient population,
cultural background, staff composition, and scope of services
provides a realistic situation to identify factors generalizable to
other facilities nationwide. When conducting simulations for
each disease (pediatric/adult asthma), one of the models
produced will directly apply to 10 or more large health care
systems.

Because inaccurate predictive models are commonly used
already for case management [24], we would expect our more
precise models to have practical value. Future studies will
demonstrate our techniques on other diseases, test cases, and
patient populations, implement our techniques in a major health
care system for risk-stratified management of asthmatic children,
and test the impact in a randomized controlled trial.

In summary, our work will transform risk-stratified patient
management and personalize management strategies based on
objective data so that more patients will receive the most
appropriate care. This will improve clinical outcomes and reduce
health care use and cost. We will achieve generalizable advances
in predictive modeling, explaining prediction results, tailoring
interventions, and resource allocation. After proper extension,
our new techniques can be used for a variety of decision support
applications in various disease settings. The new simulation
method will be useful for estimating outcomes for a predictive
model in dissimilar data environments.
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