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Abstract

Background: Gait characteristics estimated from daily-life trunk accelerations reflect gait quality and are associated with fall
incidence in older adults. While associations are based on median values of these gait characteristics, their extreme values may
reflect either high-risk situations or steady-state gait and may thus be more informative in relation to fall risk.

Objective: The objective of this study was to improve fall-risk prediction models by examining whether the use of extreme
values strengthens the associations with falls.

Methods: Trunk acceleration data (Dynaport MoveMonitor) were collected from 202 older adults over a full week. From all
walking episodes, we estimated the median and, as reliable estimates of the extremes, the 10th and 90th percentiles of gait
characteristics, all over 10-second epochs. In addition, the amount of daily activities was derived from the acceleration data, and
participants completed fall-risk questionnaires. Participants were classified as fallers based on one or more falls during 6 months
of follow-up. Univariate analyses were performed to investigate whether associations with falls were stronger for the extremes
than for the medians. Subsequently, three fall-risk models were compared: (1) using questionnaire data only, (2) adding the
amount of activities and medians of gait characteristics, and (3) using extreme values instead of medians in the case of stronger
univariate associations of the extremes.

Results: Stronger associations were found for the extreme characteristics reflecting high regularity, low frequency variability,
and low local instability in anterior-posterior direction, for high symmetry in all directions and for low entropy in anterior-posterior
and vertical directions. The questionnaire-only model improved significantly by adding activities and gait characteristics’medians.
Replacing medians by extremes with stronger associations did improve the fall prediction model, but not significantly.

Conclusions: Associations were stronger for extreme values, indicating “high gait quality” situations (ie, 10th and 90th percentiles
in case of positive and negative associations, respectively) and not for “low gait quality” situations. This suggests that gait
characteristics during optimal performance gait provide more information about the risk of falling than high-risk situations.
However, their added value over medians in prediction is limited.

(JMIR Res Protoc 2015;4(1):e4) doi: 10.2196/resprot.3931
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Introduction

Identifying persons with a high risk of falling can facilitate
effective prevention of falls. Several ways of assessing fall risk
have been investigated, including questionnaires, physical tests,
gait analysis, and physical activity measurements [1-4]. Yet the
predictive value of these models is still limited.

A promising way to assess fall risk is by means of body-worn
sensors in daily life. Trunk accelerations during walking can
provide information about personal risk factors for falls related
to physical capacity and health status. This information is
typically assessed by gait analysis in controlled settings, which
has shown that high variability, low stability, and low symmetry
of gait are associated with falling [5,6]. The use of body-worn
sensors in daily life can add information about physical activity
[7], as well as situational fall-risk factors related to one’s
behavior and environment [8]. This new approach has
demonstrated the potential to make an important contribution
to fall-risk assessment, as shown by daily-life gait
characteristics’ associations with falls and the added value of
gait characteristics in fall prediction over commonly used
methods [9-11].

Even though the previously developed fall-risk model based on
daily-life gait characteristics showed a very promising
performance (ie, an area under the receiver operator curve
[AUC] of 0.82) [10], there may still be room for improvement.
One aspect to consider is the selection of specific gait episodes
in daily life that contain the most relevant information for
fall-risk prediction. Previous studies used the mean or median
of a gait characteristic over the analyzed epochs of gait, based
on the assumption that this would be the most representative
estimate for that characteristic [9-11]. However, as situations
in daily life vary, gait characteristics obtained in particular
situations may better reflect a person’s fall risk than the median
of those obtained in all analyzed epochs of gait. On the one
hand, episodes with “low gait quality” may contain information
about taking risks or responding to risks in such situations.
High-risk situations may be expected to show high variability
and low stability and symmetry, as these gait characteristics are
associated with falling [5,6,9-15]. On the other hand, situations
where people show “high gait quality” might be informative
about the best possible performance they can achieve, which

may be closely related to personal risk factors or the
performance in a lab or on a treadmill. We expected these two
extreme situational effects, high-risk situations and optimal gait
performance, to be reflected in the extreme values of gait
characteristics calculated over 1 week. Therefore, we
investigated whether extreme values of gait characteristics
obtained in daily life had stronger associations with falls and
predicted these falls better than their median values.

Methods

Participants
The 202 individuals who participated in this study were part of
the larger Fall Risk in Old Age (FARAO) cohort study
conducted at VU University Amsterdam. They were mainly
community dwelling older adults, and inclusion criteria were
having a mini mental state examination (MMSE) of at least 19
(out of 30 points), age between 65 and 99, and the ability to
walk 20 meters continuously, with the aid of an assistive device
if needed. All participants provided written informed consent
and the medical ethical committee of the VU University Medical
Hospital approved the protocol (number 2010/290).

Protocol
At the start of the study, participants were interviewed and trunk
accelerations were recorded over a full week, after which their
fall incidence was monitored for 6 months. During the interview,
demographic information was collected (Table 1), as well as
fall history and the geriatric depression score (GDS) [16], since
these were previously shown to be associated with future falls
[10]. Following the interview, participants wore a tri-axial
accelerometer (MoveMonitor, McRoberts, The Hague,
Netherlands; sampling range -6g to 6g; sampling rate 100 Hz)
for 1 week continuously, except during water-related activities
that could damage the device. Participants were instructed to
wear the accelerometer with an elastic band around their waist
at the mid-back, at the level of their lumbar spine. After the
interview and measurements, participants’ falls were monitored
for 6 months by monthly telephone contact in addition to a daily
diary. If participants had fallen at least once during the 6-month
follow-up, they were classified as fallers; if not, they were
classified as non-fallers.

Table 1. Participant demographics.

P (t test)Non-fallers (n=132)Fallers (n=70)

.5975.1 (6.6)75.6 (6.1)Age (years), mean (SD)

.735047Gender (male), %

.939494Community dwelling, %

.4574 (14)75 (14)Weight (kg), mean (SD)

.461.70 (0.09)1.71 (0.09)Height (m), mean (SD)

.5725.3 (3.6)25.6 (3.7)BMI (kg/m2)

.662226Use of walking aid, %

.7827.8 (2.1)27.7 (2.3)MMSE (max 30), mean (SD)
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Physical Activities and Gait Characteristics
The accelerations recorded during the measurement week were
used to estimate the average amounts of physical activities as
well as a comprehensive set of gait characteristics. Table 2 (gait
characteristics) and Table 3 (physical activities) cover the
complete set of derived parameters. The parameters in question
were estimated as described in previous papers (see [7,10] for
physical activity and [9,17] for gait characteristics). We added
the estimation of sample entropy [18,19] in view of its potential
to discriminate fallers from non-fallers [10,20]. We used 5
consecutive data points and 0.3 as the radius of tolerance, based
on the determination of auto-regressive process orders and
relative errors of sample entropy for our data as proposed by
Lake et al [21]. In order to focus solely on regular walking, we
discarded locomotion episodes suspected to reflect running.
These episodes, which caused severe outliers for some
participants, were identified by a low stride time (<0.8 s) and/or
a high vertical (VT) acceleration root-mean-square (RMS) (>5

ms-2).

As in previous studies, median values of gait characteristics
were estimated from all 10-second walking epochs recorded
during the measurement week. In addition, the extremes were
estimated as the parameter values of the 10th and 90th
percentiles of the gait characteristics derived. We used the 10th
and 90th percentile values as best estimates of the extremes
themselves, since the reliability of the extremes appeared to be
insufficient; when using the data and procedures as described
in previous work [9], but now for extremes instead of medians,
more than 90% of the between-weeks intraclass correlations
(ICC) were below 0.7. For the 10th and 90th percentile values,
more than 90% had an ICC above 0.7, similar to the medians.

Statistical Analysis

Univariate Regression
We assessed the added value of extreme values of gait
characteristics over median values by comparing their
association with fall incidence through univariate logistic
regression. A percentile value (10th, 50th, or 90th) was
considered to have a stronger association over the other two
percentile values when its regression P value was lowest and
below .05.

Generating Fall Prediction Models
Three fall-risk models were generated. Model 1 was based on
the participant’s fall history (yes/no) and the GDS score. Other
data obtained through the interview were not used for the fall
prediction models because these were not associated with falling
in a previous study [10]. In Model 2, all amounts of physical
activities were added, as well as the median values of all gait
characteristics. In Model 3, we replaced the median value of a
given gait characteristic by its extreme value, provided that the
latter had a stronger association with falls according to the
univariate analysis. The outcome variable for all three models
was whether or not participants had fallen at least once during
the 6 months of follow-up. The fall prediction models were

generated by means of stepwise forward logistic regression. In
every step, the parameter with the lowest P value below .05
when added to the parameters in previous steps was selected,
provided that the parameter did not have an absolute Spearman
correlation higher than .7 with any of the previously selected
parameters. The models were tested for inadequate calibration
between predicted probabilities and observed fall incidences
using the Hosmer-Lemeshow test.

Comparing Fall Prediction Models
When evaluating the added value of new parameters for a
prediction model, it is not trivial to determine the significance
of added parameters while considering the number of parameters
that were available for selection. Commonly used tests typically
compare pre-determined prediction parameters (eg, [22,23])
and do not account for the freedom of parameter selection or
the setting of regression coefficients. In this study, to estimate
a P value for the improvement of the models when adding or
replacing parameters, we required a test that could handle
models with different numbers of parameters and could select
parameters from subsets of different numbers of potential
parameters. Since we found no analytical test that satisfied these
requirements, we used a Monte Carlo permutation test. All
parameters as obtained from the week of acceleration data
collected from one participant were permuted with the data of
another randomly selected participant. Since all gait
characteristics and amounts of activities were taken from the
same week of accelerations of another participant, correlations
between these parameters remained the same. Questionnaire
data and fall incidence were not permuted between participants.
We generated models for 1000 differently permuted datasets
and estimated the P value for the improvement between models
as the ratio of permutations having a larger increase of the area
under the receiver operator curve (AUC) between the models
than the increase of the AUC between the models obtained with
the original dataset. The first model, being based exclusively
on questionnaire data, was not affected by the permutations.

Results

Univariate regression showed significant associations (P<.05)
with falling for 14 out of 30 gait characteristic medians (Table
2). High stride regularity anterior-posterior (AP), high harmonic
ratio VT and AP, low local dynamic stability AP, and low
sample entropy VT had a stronger association than the medians
of these characteristics. When using extremes, the associations
of low frequency variability AP, high harmonic ratio
mediolateral (ML), and low sample entropy AP with falls were
significant, whereas they were not significant when using the
median values. All stronger associations for extremes were
found for the extremes related to optimal performance gait, that
is, the 10th percentile (lower extreme) in case of positive
associations with falls, and the 90th percentile (higher extreme)
in case of negative associations. Regression results of
questionnaire data and amounts of activities showed significant
associations for fall history, GDS depression scale, and lying
duration (Table 3).
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Table 2. Univariate logistic regression of gait characteristics’ 10th, 50th, and 90th percentile values, with future falls (B values [P values] are based
on z-transformed data).

90th perc.

B (P)

Median

B (P)

10th perc.

B (P)

Characteristics

-0.32 (.04)-0.38 (.02)a-0.36 (.03)Gait speed

-0.08 (.60)0.19 (.21)0.26 (.10)Speed variability

-0.15 (.41)-0.31 (.04)a-0.21 (.15)Stride frequency

-0.12 (.41)0.26 (.08)0.25 (.09)Frequency variability VT

0.01 (.96)0.21 (.15)0.25 (.10)Frequency variability ML

0.07 (.61)0.27 (.07)0.33 (.03)aFrequency variability AP

-0.26 (.08)-0.34 (.03)a-0.23 (.14)Stride regularity VT

-0.06 (.70)-0.08 (.58)0.07 (.65)Stride regularity ML

-0.37 (.02)a-0.32 (.04)a-0.24 (.12)Stride regularity AP

-0.41 (.009)-0.50 (.004)a-0.29 (.07)RMS VT

-0.06 (.67)-0.08 (.60)0.09 (.53)RMS ML

-0.25 (.11)-0.37 (.02)a-0.20 (.19)RMS AP

0.23 (.11)0.38 (.01)a0.20 (.18)Low frequency percentage VT <0.7 Hz

0.15 (.32)0.33 (.04)a0.24 (.12)Low frequency percentage ML <10 Hz

0.27 (.07)0.37 (.01)a0.28 (.06)Low frequency percentage AP <0.7 Hz

-0.20 (.17)-0.23 (.12)-0.16 (.30)Index of harmonicity VT

0.13 (.37)0.24 (.11)0.27 (.07)Index of harmonicity ML

0.28 (.07)0.18 (.23)0.11 (.45)Index of harmonicity AP

-0.51 (.003)a-0.43 (.009)a-0.03 (.83)Harmonic ratio VT

-0.32 (.048)a-0.25 (.11)0.11 (.46)Harmonic ratio ML

-0.53 (.002)a-0.41 (.01)a-0.05 (.76)Harmonic ratio AP

0.22 (.16)0.33 (.03)a0.29 (.053)Local dynamic stability VT

0.03 (.86)0.08 (.58)0.10 (.51)Local dynamic stability ML

0.27 (.08)0.34 (.03)a0.38 (.02)aLocal dynamic stability AP

0.14 (.35)0.41 (.02)a0.60 (<.001)aSample entropy VT

-0.16 (.31)-0.12 (.43)-0.09 (.54)Sample entropy ML

0.02 (.87)0.22 (.15)0.39 (.01)aSample entropy AP

-0.19 (.21)-0.29 (.06)-0.22 (.16)Dominant frequency’s amplitude VT

0.15 (.31)0.14 (.34)0.16 (.28)Dominant frequency’s amplitude ML

0.07 (.63)-0.06 (.71)-0.13 (.37)Dominant frequency’s amplitude AP

aSignificant associations of medians and stronger associations of extremes.
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Table 3. Univariate logistic regression of questionnaire parameters and amounts of physical activities with future falls (B values [P values] are based
on z-transformed data).

B (P)

0.55 (<.001)aFall history

0.45 (.003)aGDS depression scale

-0.40 (.02)aLying duration

0.27 (.09)Sitting duration

0.24 (.11)Standing duration

-0.01 (.96)Locomotion duration

0.23 (.12)Shuffling duration

0.15 (.30)Number of transitionsb

-0.05 (.76)Number of steps

aSignificant associations.
bDirect transitions from sedentary (lying and sitting) to non-sedentary (standing, locomotion, and shuffling) activities.

Fall history was selected as a parameter in all models. GDS
depression score was selected in the questionnaires-only model
but not in the models including acceleration data. In both models
that included acceleration data, lying duration as well as low
frequency percentage below 0.7 Hz in the VT and sample

entropy in both the VT and ML direction were selected (Table
4). For Model 3, only one extreme value (10th percentile of
Sample Entropy VT) was selected as a parameter. The
Hosmer-Lemeshow test revealed no indications of inadequate
calibration (P=.58, .41, and .76 for Models 1-3, respectively).

Table 4. Fall prediction models with parameter coefficients and P values.

ParametersP valueBModels

Model 1: questionnaires only

Constant<.001-0.70

Fall history.0040.46

GDS depression score.040.33

Model 2: add activities and gait characteristics’ medians

Constant<.001-0.66

Fall history<.0010.67

Low frequency percentage VT <0.7 Hz.040.41

Lying duration.02-0.43

Sample entropy VT.0020.86

Sample entropy ML.03-0.53

Model 3: replace gait characteristics’ median if extreme has stronger association

Constant<.001-0.68

Fall history<.0010.69

Sample entropy VT (Low extreme)<.0011.02

Low frequency percentage VT <0.7 Hz.0020.61

Lying duration.004-0.60

Sample entropy ML.03-0.47

Receiver operating characteristic (ROC) curves of the 3
prediction models are shown in Figure 1. The AUC for the
prediction Models 1-3 were 0.684, 0.781, and 0.808,
respectively. Models 2 and 3, which both involved daily-life
acceleration parameters, performed significantly better than

Model 1 (P values for the improvements were .01 and .003,
respectively). Model 3 with extremes did not improve
significantly with respect to Model 2 based exclusively on
median values (P=.19).
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Figure 1. ROC curves for the 3 prediction models.

Discussion

Principal Findings
This study investigated whether extreme values of gait
characteristics as observed during a single week in daily life
are more strongly associated with fall risk than their median
values. In particular, we determined the added value for fall-risk
assessment of such extreme values of gait characteristics above
the median values.

The characteristics with an extreme that had a univariate
association stronger than the median, that is, high regularity
and harmonic ratio, and low frequency variability, local dynamic
stability and entropy, seemed to share a strong dependency on
situational effects, as indicated for example by their systematic
difference between treadmill and daily-life walking [8]. For all
of these characteristics, the strongest associations with fall risk
were found for the extremes related to a lower fall risk, which
indicates that they were the “high gait quality” extremes. This
suggests that for these characteristics the optimal performance
in daily-life situations provided more information about fall
risk than performance in more demanding situations. These
optimal performance gait episodes may be recorded in situations
that are more comparable between subjects and may
consequently provide a better assessment of an individual’s
capacities than the median. However, the most representative
values in daily life, as quantified by the median, still had
stronger associations for most of the characteristics. The fact

that none of the “low gait quality” extremes were found to have
a stronger association than the medians suggests that the
presence of irregular gait episodes in daily life is not an
indication of situations with higher fall risk, but rather an
indication of situations that require or permit gait adaptations.
Low gait quality extremes may reflect the exposure to
environmental constraints, such as imposed by a winding forest
track compared to a paved footpath. Moreover, exposed
individuals may be those who can cope with such environmental
constraints, whereas these are avoided by individuals with
acknowledged lower gait quality.

The expected added value of the gait characteristics’ extreme
values in daily life above the medians in a fall-risk prediction
model was not demonstrated. Although the model including the
extremes (Model 3) had a higher AUC than the model with the
medians (Model 2), the Monte Carlo permutation test indicated
that this difference may have resulted from a combination of
chance and an expected improvement due to the replacement
of medians with more strongly associated extremes; the P value
for the improvement found was .19. The improvement of
univariate associations found may have been too small to yield
a significant effect on the predictive value of the models.
Perhaps the high-quality extremes are merely a more accurate
estimation of the individual’s capacities and do not provide
information about a new concept such as risk-taking behavior.
However, the Monte Carlo permutation tests did confirm the
previously reported finding that information from trunk
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accelerations recorded during a week in daily life significantly
improves fall prediction models based on questionnaire data
alone [10].

Limitations
The reported AUC and the Monte Carlo permutation test have
their limitations. The AUC we reported may have been biased
since the AUC was estimated from the same dataset used for
the model generation. The presented models should be validated
with new or other data, in order to obtain an unbiased AUC.
The Monte Carlo permutation test is a method for testing the
significance of model improvement by increasing the set of
optional parameters. However, in the comparison of Models 2
and 3, we did not add parameters, but rather replaced parameters.
It was therefore necessary to compare the change in AUC
between permuted and non-permuted data, rather than the AUC
itself. This comparison assumed that probability of the
improvement of 0.027 (ie, the difference in AUC between
Models 2 and 3) is similar for different starting values of the
AUC. However, one may assume that such an improvement is
less probable when starting with a higher AUC. We can
therefore consider the estimated P value of .19 as a conservative
estimate, since the starting AUC (Model 2) of the permuted
data was typically lower than that of the non-permuted data.

Comparison With Previous Studies
The parameters that were incorporated in the model comparison
have been previously linked to falling [1,9,10,20], except for
lying duration. Lying duration was negatively associated with
fall risk, which might be explained by an elevated risk of falling
when one is not well rested, assuming that less lying implies

being less well-rested. It may also reflect high fall risk when
leaving the bed during the night. Sample entropy was previously
found to be associated with falling for the AP direction, but not
for the ML direction [20]. Also in this study sample entropy in
ML direction was not univariately associated with falling. This
hampers the interpretation of its contribution to the model and
of its meaning for fall risk in general.

When comparing the results in this study with those reported
previously [10], one would expect to find quite similar results
since most of the participants (169 out of our 202) participated
in both studies. This was indeed the case for the univariate
associations. With one exception (local dynamic stability or
logarithmic divergence rate in mediolateral direction), all
differences in significant associations were still nearly
significant with P<.10. However, Model 2, which included
physical activities and gait characteristics’ medians, contained
different parameters than the model derived in the previous
study [10]. Apparently, the selection of model parameters was
sensitive to slight changes in population. The models were in
agreement in that both included fall history and a combination
of physical activity parameters and gait characteristics.

Conclusions
Several “good gait quality” extremes of gait characteristics were
estimated to have a stronger association with future falls than
their medians. In particular, epochs with low frequency
variability and high regularity, symmetry, and stability may be
of particular interest for fall-risk prediction. However, using
gait characteristics’ extremes in addition to medians did not
significantly improve fall prediction models.
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